Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(7): e0195722, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37310267

RESUMO

Herpes simplex virus type-1 (HSV-1) protein ICP27 is an essential immediate early (IE) protein that promotes the expression of viral early (E) and late (L) genes via multiple mechanisms. Our understanding of this complex regulatory protein has been greatly enhanced by the characterization of HSV-1 mutants bearing engineered alterations in the ICP27 gene. However, much of this analysis has been performed in interferon-deficient Vero monkey cells. Here, we assessed the replication of a panel of ICP27 mutants in several other cell types. Our analysis shows that mutants lacking ICP27's amino (N)-terminal nuclear export signal (NES) display a striking cell type-dependent growth phenotype, i.e., they grow semi-permissively in Vero and some other cells but are tightly blocked for replication in primary human fibroblasts and multiple human cell lines. This tight growth defect correlates with a failure of these mutants to replicate viral DNA. We also report that HSV-1 NES mutants are deficient in expressing the IE protein ICP4 at early times postinfection. Analysis of viral RNA levels suggests that this phenotype is due, at least in part, to a defect in the export of ICP4 mRNA to the cytoplasm. In combination, our results (i) show that ICP27's NES is critically important for HSV-1 replication in many human cells, and (ii) suggest that ICP27 plays a heretofore unappreciated role in the expression of ICP4. IMPORTANCE HSV-1 IE proteins drive productive HSV-1 replication. The major paradigm of IE gene induction, developed over many years, involves the parallel activation of the five IE genes by the viral tegument protein VP16, which recruits the host RNA polymerase II (RNAP II) to the IE gene promoters. Here, we provide evidence that ICP27 can enhance ICP4 expression early in infection. Because ICP4 is required for transcription of viral E and L genes, this finding may be relevant to understanding how HSV-1 enters and exits the latent state in neurons.


Assuntos
Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Animais , Chlorocebus aethiops , Humanos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Sinais de Exportação Nuclear , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Linhagem Celular , Células Vero , Replicação Viral
2.
J Virol ; 87(16): 8940-51, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23740995

RESUMO

Leptomycin B (LMB) is a highly specific inhibitor of CRM1, a cellular karyopherin-ß that transports nuclear export signal-containing proteins from the nucleus to the cytoplasm. Previous work has shown that LMB blocks herpes simplex virus 1 (HSV-1) replication in Vero cells and that certain mutations in viral immediate early protein ICP27 can confer LMB resistance. However, little is known of the molecular mechanisms involved. Here we report that HSV-2, a close relative of HSV-1, is naturally resistant to LMB. To see whether the ICP27 gene determines this phenotypic difference, we generated an HSV-1 mutant that expresses the HSV-2 ICP27 instead of the HSV-1 protein. This recombinant was fully sensitive to LMB, indicating that one or more other viral genes must be important in determining HSV-2's LMB-resistant phenotype. In additional work, we report several findings that shed light on how HSV-1 ICP27 mutations can confer LMB resistance. First, we show that LMB treatment of HSV-1-infected cells leads to suppression of late viral protein synthesis and a block to progeny virion release. Second, we identify a novel type of ICP27 mutation that can confer LMB resistance, that being the addition of a 100-residue amino-terminal affinity purification tag. Third, by studying infections where both LMB-sensitive and LMB-resistant forms of ICP27 are present, we show that HSV-1's sensitivity to LMB is dominant to its resistance. Together, our results suggest a model in which the N-terminal portion of ICP27 mediates a nonessential activity that interferes with HSV-1 replication when CRM1 is inactive. We suggest that LMB resistance mutations weaken or abrogate this activity.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Proteínas Imediatamente Precoces/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Farmacorresistência Viral , Ácidos Graxos Insaturados/farmacologia , Humanos , Proteínas Imediatamente Precoces/genética , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Recombinação Genética , Replicação Viral/efeitos dos fármacos
3.
J Virol ; 85(21): 11220-34, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21835787

RESUMO

Successful intracellular pathogens must evade or neutralize the innate immune defenses of their host cells and render the cellular environment permissive for replication. For example, to replicate efficiently in CD4(+) T lymphocytes, human immunodeficiency virus type 1 (HIV-1) encodes a protein called viral infectivity factor (Vif) that promotes pathogenesis by triggering the degradation of the retrovirus restriction factor APOBEC3G. Other APOBEC3 proteins have been implicated in HIV-1 restriction, but the relevant repertoire remains ambiguous. Here we present the first comprehensive analysis of the complete, seven-member human and rhesus APOBEC3 families in HIV-1 restriction. In addition to APOBEC3G, we find that three other human APOBEC3 proteins, APOBEC3D, APOBEC3F, and APOBEC3H, are all potent HIV-1 restriction factors. These four proteins are expressed in CD4(+) T lymphocytes, are packaged into and restrict Vif-deficient HIV-1 when stably expressed in T cells, mutate proviral DNA, and are counteracted by HIV-1 Vif. Furthermore, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H of the rhesus macaque also are packaged into and restrict Vif-deficient HIV-1 when stably expressed in T cells, and they are all neutralized by the simian immunodeficiency virus Vif protein. On the other hand, neither human nor rhesus APOBEC3A, APOBEC3B, nor APOBEC3C had a significant impact on HIV-1 replication. These data strongly implicate a combination of four APOBEC3 proteins--APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H--in HIV-1 restriction.


Assuntos
Citosina Desaminase/imunologia , HIV-1/imunologia , HIV-1/patogenicidade , Fatores de Virulência/deficiência , Produtos do Gene vif do Vírus da Imunodeficiência Humana/deficiência , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Citosina Desaminase/metabolismo , Humanos , Macaca mulatta , Dados de Sequência Molecular , Análise de Sequência de DNA , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade
4.
J Virol ; 84(16): 8193-201, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20519393

RESUMO

All lentiviruses except equine infectious anemia virus (EIAV) use the small accessory protein Vif to counteract the restriction activity of the relevant APOBEC3 (A3) proteins of their host species. Prior studies have suggested that the Vif-A3 interaction is species specific. Here, using the APOBEC3H (Z3)-type proteins from five distinct mammals, we report that this is generally not the case: some lentiviral Vif proteins are capable of triggering the degradation of both the A3Z3-type protein of their normal host species and those of several other mammals. For instance, SIV(mac) Vif can mediate the degradation of the human, macaque, and cow A3Z3-type proteins but not of the sheep or cat A3Z3-type proteins. Maedi-visna virus (MVV) Vif is similarly promiscuous, degrading not only sheep A3Z3 but also the A3Z3-type proteins of humans, macaques, cows, and cats. In contrast to the neutralization capacity of these Vif proteins, human immunodeficiency virus (HIV), bovine immunodeficiency virus (BIV), and feline immunodeficiency virus (FIV) Vif appear specific to the A3Z3-type protein of their hosts. We conclude, first, that the Vif-A3Z3 interaction can be promiscuous and, second, despite this tendency, that each lentiviral Vif protein is optimized to degrade the A3Z3 protein of its mammalian host. Our results thereby suggest that the Vif-A3Z3 interaction is relevant to lentivirus biology.


Assuntos
Citosina Desaminase/antagonistas & inibidores , Produtos do Gene vif/metabolismo , Lentivirus/patogenicidade , Fatores de Virulência/metabolismo , Animais , Gatos , Bovinos , Humanos , Macaca , Ovinos
5.
J Virol ; 82(15): 7443-55, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18495765

RESUMO

We previously showed that herpes simplex virus type 1 (HSV-1) immediate-early (IE) protein ICP27 can posttranscriptionally stimulate mRNA accumulation from a transfected viral late gene encoding glycoprotein C (gC) (K. D. Perkins, J. Gregonis, S. Borge, and S. A. Rice, J. Virol. 77:9872-9884, 2003). We began this study by asking whether ICP27 homologs from other herpesviruses can also mediate this activity. Although the homologs from varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) were inactive, the homolog from bovine herpesvirus 4 (BHV-4), termed HORF1/2, was a very efficient transactivator. Surprisingly, most of the mRNA produced via HORF1/2 transactivation was 225 nucleotides shorter than expected due to the removal of a previously undescribed intron from the gC transcript. We found that the gC mRNA produced in the absence of transactivation was also mostly spliced. In contrast, gC mRNA produced by ICP27 transactivation was predominantly unspliced. Based on these results, we conclude that ICP27 has two distinct effects on the transfected gC gene: it (i) stimulates mRNA accumulation and (ii) promotes the retention of an intron. Interestingly, the spliced transcript encodes a variant of gC that lacks its transmembrane domain and is secreted from transfected cells. As the gC splicing signals are conserved among several HSV-1 strains, we investigated whether the variant gC is expressed during viral infection. We report here that both the spliced transcript and its encoded protein are readily detected in Vero cells infected with three different laboratory strains of wild-type HSV-1. Moreover, the variant gC is efficiently secreted from infected cells. We have designated this alternate form of the protein as gCsec. As the extracellular domain of gC is known to bind heparan sulfate-containing proteoglycans and to inhibit the complement cascade via an interaction with complement component C3b, we speculate that gCsec could function as a secreted virulence factor.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas do Envelope Viral/biossíntese , Animais , Linhagem Celular , Chlorocebus aethiops , Herpesvirus Bovino 4 , Humanos , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Transativadores/metabolismo , Proteínas não Estruturais Virais/metabolismo
6.
Nat Struct Mol Biol ; 17(2): 222-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20062055

RESUMO

Bacteria evolved restriction endonucleases to prevent interspecies DNA transmission and bacteriophage infection. Here we show that human cells possess an analogous mechanism. APOBEC3A is induced by interferon following DNA detection, and it deaminates foreign double-stranded DNA cytidines to uridines. These atypical DNA nucleosides are converted by the uracil DNA glycosylase UNG2 to abasic lesions, which lead to foreign DNA degradation. This mechanism is evident in cell lines and primary monocytes, where up to 97% of cytidines in foreign DNA are deaminated. In contrast, cellular genomic DNA appears unaffected. Several other APOBEC3s also restrict foreign gene transfer. Related proteins exist in all vertebrates, indicating that foreign DNA restriction may be a conserved innate immune defense mechanism. The efficiency and fidelity of genetic engineering, gene therapy, and DNA vaccination are likely to be influenced by this anti-DNA defense system.


Assuntos
Citidina Desaminase/biossíntese , Citidina Desaminase/imunologia , Interferons/imunologia , Proteínas/imunologia , Linhagem Celular , Células Cultivadas , Citidina/metabolismo , DNA , DNA Glicosilases/metabolismo , DNA Bacteriano/metabolismo , DNA Viral/metabolismo , Desaminação , Humanos , Transfecção , Uridina/metabolismo
7.
Virology ; 352(2): 368-79, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16780914

RESUMO

It was previously shown that herpes simplex virus type 1 (HSV-1) is sensitive to leptomycin B (LMB), an inhibitor of nuclear export factor CRM1, and that a single methionine to threonine change at residue 50 (M50T) of viral immediate-early (IE) protein ICP27 can confer LMB resistance. In this work, we show that deletion of residues 21-63 from ICP27 can also confer LMB resistance. We further show that neither the M50T mutation nor the presence of LMB affects the nuclear shuttling activity of ICP27, suggesting that another function of ICP27 determines LMB resistance. A possible clue to this function emerged when it was discovered that LMB treatment of HSV-1-infected cells dramatically enhances the cytoplasmic accumulation of two other IE proteins, ICP0 and ICP4. This effect is completely dependent on ICP27 and is reversed in cells infected with LMB-resistant mutants. Moreover, LMB-resistant mutations in ICP27 enhance the nuclear localization of ICP0 and ICP4 even in the absence of LMB, and this effect can be discerned in transfected cells. Thus, the same amino (N)-terminal region of ICP27 that determines sensitivity to LMB also enhances ICP27's previously documented ability to promote the cytoplasmic accumulation of ICP4 and ICP0. We speculate that ICP27's effects on ICP4 and ICP0 may contribute to HSV-1 LMB sensitivity.


Assuntos
Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Citoplasma/virologia , Farmacorresistência Viral , Ácidos Graxos Insaturados/farmacologia , Genes Virais , Herpesvirus Humano 1/genética , Humanos , Proteínas Imediatamente Precoces/genética , Camundongos , Mutação Puntual , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção , Células Vero
8.
J Virol ; 76(23): 11866-79, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12414929

RESUMO

Infected-cell protein 27 (ICP27) is an essential herpes simplex virus type 1 (HSV-1) regulatory protein that activates a subset of viral delayed-early and late genes, at least in part through posttranscriptional mechanisms. Previous studies have shown that the amino (N)-terminal half of the protein contains important functional regions, including a leucine-rich nuclear export signal (NES). However, to date, the phenotype of an HSV-1 ICP27 NES mutant has not been reported. In this study, we engineered and characterized dLeu, an HSV-1 deletion mutant that specifically lacks ICP27's NES (amino acids 6 to 19). The phenotype of dLeu was analyzed alongside those of eight other ICP27 N-terminal deletion mutants. We found that in Vero cells, dLeu displays modest defects in viral gene expression and an approximately 100-fold reduction in the production of viral progeny. Unlike wild-type (WT) ICP27, which exhibits a cytoplasmic distribution in addition to its predominant nuclear localization, dLeu ICP27 is highly restricted to the cell nucleus. This strongly suggests that the N-terminal leucine-rich sequence functions as an NES during viral infection. Our analysis of dLeu and the other mutants has enabled us to genetically define the regions in the N-terminal 200 residues of ICP27 which are required for efficient viral growth in Vero cells. Only two regions appear to be important: (i) the leucine-rich NES and (ii) the RGG box RNA-binding domain, encoded by residues 139 to 153. A virus lacking the RGG box-encoding sequence, d4-5, has a phenotype similar to that of dLeu in that it displays modest defects in viral gene expression and grows poorly. Interestingly, deletion of both the NES and RGG box, as well as the sequences in between, is lethal. The resulting virus, d1-5, displays severe defects in viral gene expression and DNA synthesis and is unable to produce significant amounts of infectious progeny. Therefore, the N-terminal portion of ICP27 contains at least two functional domains which collectively are absolutely essential for viral infection.


Assuntos
Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/metabolismo , Simplexvirus/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Núcleo Celular/virologia , Chlorocebus aethiops , Replicação do DNA , DNA Viral/biossíntese , DNA Viral/genética , Expressão Gênica , Genes Virais , Proteínas Imediatamente Precoces/genética , Leucina/química , Dados de Sequência Molecular , Mutação , Mapeamento de Peptídeos , Estrutura Terciária de Proteína , RNA Viral/genética , Deleção de Sequência , Simplexvirus/genética , Simplexvirus/crescimento & desenvolvimento , Células Vero
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa