Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 48(12): 6909-18, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24819143

RESUMO

Composting may serve as a practical and economical means of disposing of specified risk materials (SRM) or animal mortalities potentially infected with prion diseases (transmissible spongiform encephalopathies, TSE). Our study investigated the degradation of prions associated with scrapie (PrP(263K)), chronic waste disease (PrP(CWD)), and bovine spongiform encephalopathy (PrP(BSE)) in lab-scale composters and PrP(263K) in field-scale compost piles. Western blotting (WB) indicated that PrP(263K), PrP(CWD), and PrP(BSE) were reduced by at least 2 log10, 1-2 log10, and 1 log10 after 28 days of lab-scale composting, respectively. Further analysis using protein misfolding cyclic amplification (PMCA) confirmed a reduction of 2 log10 in PrP(263K) and 3 log10 in PrP(CWD). Enrichment for proteolytic microorganisms through the addition of feather keratin to compost enhanced degradation of PrP(263K) and PrP(CWD). For field-scale composting, stainless steel beads coated with PrP(263K) were exposed to compost conditions and removed periodically for bioassays in Syrian hamsters. After 230 days of composting, only one in five hamsters succumbed to TSE disease, suggesting at least a 4.8 log10 reduction in PrP(263K) infectivity. Our findings show that composting reduces PrP(TSE), resulting in one 50% infectious dose (ID50) remaining in every 5600 kg of final compost for land application. With these considerations, composting may be a viable method for SRM disposal.


Assuntos
Príons/metabolismo , Solo/química , Animais , Biodegradação Ambiental , Bioensaio , Western Blotting , Bovinos , Cricetinae , Feminino , Mesocricetus , Proteínas Mutantes/metabolismo , Dobramento de Proteína
2.
Artigo em Inglês | MEDLINE | ID: mdl-23030385

RESUMO

Composting may be a viable alternative to rendering and land filling for the disposal of specified risk material (SRM) provided that infectious prion proteins (PrP(TSE)) are inactivated. This study investigated the degradation of SRM and the fate of scrapie prions (PrP(Sc)) over 28 days in laboratory-scale composters, with and without feathers in the compost matrices. Compost was mixed at day 14 to generate a second heating cycle, with temperatures exceeding 65°C in the first cycle and 50°C in the second cycle. Approximately 63% and 77% of SRM was degraded after the first and second cycles, respectively. Inclusion of feathers in the compost matrices did not alter compost properties during composting other than increasing (P < 0.05) total nitrogen and reducing (P < 0.05) the C/N ratio. However, addition of feathers enhanced (P < 0.05) SRM degradation by 10% upon completion of experiment. Scrapie brain homogenates were spiked into manure at the start of composting and extracted using sodium dodecyl sulphate followed by detection using Western blotting (WB). Prior to composting, PrP(Sc) was detectable in manure with 1-2 log(10) sensitivity, but was not observable after 14 or 28 days of composting. This may have been due to either biological degradation of PrP(Sc) or the formation of complexes with compost components that precluded its detection.


Assuntos
Príons/metabolismo , Scrapie/metabolismo , Solo/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Biodegradação Ambiental , Modelos Teóricos
3.
Biodegradation ; 22(5): 1029-43, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21360115

RESUMO

As a result of bovine spongiform encephalopathy in Canada, specific tissues at risk of harbouring prions are not allowed to enter the food chain. Composting may be a viable alternative to rendering and land filling for the disposal of specified risk material (SRM). Two types of laboratory-scale composters, actively-heated and ambient systems were constructed to assess the biodegradation of SRM over 30 days. A second heating cycle was generated by mixing the compost after 15 days. Compared to ambient composters, temperature profiles in actively-heated composters were above 50°C for 5 and 4 days longer in the first and second composting cycles, respectively. Degradation of SRM was similar between two composter types during two composting cycles, averaging 52.2% in the first cycle and 43.9% in second cycle. Denaturing gradient gel electrophoresis (DGGE) revealed that changes in the actinobacteria populations in the first composting cycle were of a temporal nature, whereas alterations in populations in the second composting cycle were more related to active heating of compost. Sequencing of the dominant DGGE bands showed the predominance of Corynebacterium, Promicromonospora, Pseudonocardia, and Thermobifida in the first composting cycle and Corynebacterium, Mycobacterium, Nocardia, Saccharomonospora, and Streptomyces in the second composting cycle. Active heating can alter the nature of actinobacteria populations in compost, but does not appear to have a major impact on the extent of degradation of SRM.


Assuntos
Actinobacteria/metabolismo , Bovinos , Eliminação de Resíduos de Serviços de Saúde/métodos , Eliminação de Resíduos/métodos , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , Biodegradação Ambiental , Bovinos/microbiologia , DNA Bacteriano/genética , RNA Ribossômico 16S/genética
4.
Bioresour Technol ; 99(6): 1886-95, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17997302

RESUMO

Temperature is widely accepted as a critical indicator of aerobic microbial activity during composting but, to date, little effort has been made to devise an appropriate statistical approach for the analysis of temperature time series. Nonlinear, time-correlated effects have not previously been considered in the statistical analysis of temperature data from composting, despite their importance and the ubiquity of such features. A novel mathematical model is proposed here, based on a modified Gompertz function, which includes nonlinear, time-correlated effects. Methods are shown to estimate initial values for the model parameter. Algorithms in SAS are used to fit the model to different sets of temperature data from passively aerated compost. Methods are then shown for testing the goodness-of-fit of the model to data. Next, a method is described to determine, in a statistically rigorous manner, the significance of differences among the time-correlated characteristics of the datasets as described using the proposed model. An extra-sum-of-squares method was selected for this purpose. Finally, the model and methods are used to analyze a sample dataset and are shown to be useful tools for the statistical comparison of temperature data in composting.


Assuntos
Biotecnologia/métodos , Solo , Algoritmos , Carbono/química , Análise dos Mínimos Quadrados , Modelos Estatísticos , Modelos Teóricos , Nitrogênio/química , Linguagens de Programação , Análise de Regressão , Software , Temperatura , Fatores de Tempo
5.
Waste Manag ; 33(6): 1372-80, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23490363

RESUMO

Provided that infectious prions (PrP(Sc)) are inactivated, composting of specified risk material (SRM) may be a viable alternative to rendering and landfilling. In this study, bacterial and fungal communities as well as greenhouse gas emissions associated with the degradation of SRM were examined in laboratory composters over two 14 day composting cycles. Chicken feathers were mixed into compost to enrich for microbial communities involved in the degradation of keratin and other recalcitrant proteins such as prions. Feathers altered the composition of bacterial and fungal communities primarily during the first cycle. The bacterial genera Saccharomonospora, Thermobifida, Thermoactinomycetaceae, Thiohalospira, Pseudomonas, Actinomadura, and Enterobacter, and the fungal genera Dothideomycetes, Cladosporium, Chaetomium, and Trichaptum were identified as candidates involved in SRM degradation. Feathers increased (P<0.05) headspace concentrations of CH4 primarily during the early stages of the first cycle and N2O during the second. Although inclusion of feathers in compost increases greenhouse gas emissions, it may promote the establishment of microbial communities that are more adept at degrading SRM and recalcitrant proteins such as keratin and PrP(Sc).


Assuntos
Biodegradação Ambiental , Resíduos Perigosos , Consórcios Microbianos/fisiologia , Microbiologia do Solo , Animais , Bactérias/genética , Bactérias/metabolismo , Bovinos , Galinhas , Plumas , Fungos/genética , Fungos/metabolismo , Gases , Queratinas/metabolismo , Esterco , Metano/metabolismo , Consórcios Microbianos/genética , Dados de Sequência Molecular , Óxido Nitroso/metabolismo , Filogenia , Príons/metabolismo , RNA Ribossômico 16S , Solo
6.
Bioresour Technol ; 100(2): 782-90, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18710800

RESUMO

The influence of free air space (FAS) on passively aerated composting has been reported, but the quantitative relationship between FAS and the microbial kinetics in passively aerated compost has not been investigated. This relationship was studied by composting dairy manure and straw in an enclosed, passively aerated, cylindrical vessel. Based on this experimental system, conceptual and numerical models were developed in which the compost bed was considered to consist of layered elements, each being physically and chemically homogeneous. The microbial activity in each layer was represented in order to predict oxygen and substrate consumption and the release of water and heat. Convective transport of air, moisture, and heat through the layers was represented. Microbial growth and substrate consumption rates were described using modified first-order kinetics for each of the mesophilic and thermophilic temperature regimes. The values of the microbial kinetic parameters were adjusted for each layer based on an innovative, non-linear, statistical analysis of temperature histories recorded at different layers in the compost bed during three treatments (i.e., FAS values of 0.45, 0.52, and 0.65). Microbial kinetic rate constants were found to follow a sigmoid relationship with FAS, with correlation coefficients (R(2)) of 0.97 for the mesophilic stage and 0.96 for the thermophilic stage. Temperature histories and airflow measurements from a fourth treatment (FAS value of 0.57) were used as an independent check of the model's performance. Simulation results indicate that the model could predict the general trend of temperature development. A plot of the residuals shows that the model is biased, however, possibly because many parameters in the model were not measured directly but instead were estimated from literature. The result from this study demonstrates a new method for describing the relationship between microbial kinetics (k(max)) and substrate FAS, which could be used to improve the design, optimization, and management of passively aerated composting facilities.


Assuntos
Ar , Bactérias Aeróbias/citologia , Bactérias Aeróbias/fisiologia , Reatores Biológicos/microbiologia , Modelos Biológicos , Reologia/métodos , Microbiologia do Solo , Proliferação de Células , Sobrevivência Celular , Simulação por Computador , Temperatura Alta , Cinética , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa