Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell ; 172(3): 618-628.e13, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29307492

RESUMO

Peptides have great potential to combat antibiotic resistance. While many platforms can screen peptides for their ability to bind to target cells, there are virtually no platforms that directly assess the functionality of peptides. This limitation is exacerbated when identifying antimicrobial peptides because the phenotype, death, selects against itself and has caused a scientific bottleneck that confines research to a few naturally occurring classes of antimicrobial peptides. We have used this seeming dissonance to develop Surface Localized Antimicrobial Display (SLAY), a platform that allows screening of unlimited numbers of peptides of any length, composition, and structure in a single tube for antimicrobial activity. Using SLAY, we screened ∼800,000 random peptide sequences for antimicrobial function and identified thousands of active sequences, dramatically increasing the number of known antimicrobial sequences. SLAY hits present with different potential mechanisms of peptide action and access to areas of antimicrobial physicochemical space beyond what nature has evolved. VIDEO ABSTRACT.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Biblioteca de Peptídeos , Animais , Antibacterianos/química , Escherichia coli , Camundongos
2.
Bioinformatics ; 40(7)2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905502

RESUMO

SUMMARY: The design of two overlapping genes in a microbial genome is an emerging technique for adding more reliable control mechanisms in engineered organisms for increased stability. The design of functional overlapping gene pairs is a challenging procedure, and computational design tools are used to improve the efficiency to deploy successful designs in genetically engineered systems. GENTANGLE (Gene Tuples ArraNGed in overLapping Elements) is a high-performance containerized pipeline for the computational design of two overlapping genes translated in different reading frames of the genome. This new software package can be used to design and test gene entanglements for microbial engineering projects using arbitrary sets of user-specified gene pairs. AVAILABILITY AND IMPLEMENTATION: The GENTANGLE source code and its submodules are freely available on GitHub at https://github.com/BiosecSFA/gentangle. The DATANGLE (DATA for genTANGLE) repository contains related data and results and is freely available on GitHub at https://github.com/BiosecSFA/datangle. The GENTANGLE container is freely available on Singularity Cloud Library at https://cloud.sylabs.io/library/khyox/gentangle/gentangle.sif. The GENTANGLE repository wiki (https://github.com/BiosecSFA/gentangle/wiki), website (https://biosecsfa.github.io/gentangle/), and user manual contain detailed instructions on how to use the different components of software and data, including examples and reproducing the results. The code is licensed under the GNU Affero General Public License version 3 (https://www.gnu.org/licenses/agpl.html).


Assuntos
Software , Biologia Computacional/métodos , Genoma Microbiano , Engenharia Genética/métodos
3.
Nucleic Acids Res ; 51(13): 7094-7108, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37260076

RESUMO

The development of synthetic biological circuits that maintain functionality over application-relevant time scales remains a significant challenge. Here, we employed synthetic overlapping sequences in which one gene is encoded or 'entangled' entirely within an alternative reading frame of another gene. In this design, the toxin-encoding relE was entangled within ilvA, which encodes threonine deaminase, an enzyme essential for isoleucine biosynthesis. A functional entanglement construct was obtained upon modification of the ribosome-binding site of the internal relE gene. Using this optimized design, we found that the selection pressure to maintain functional IlvA stabilized the production of burdensome RelE for >130 generations, which compares favorably with the most stable kill-switch circuits developed to date. This stabilizing effect was achieved through a complete alteration of the allowable landscape of mutations such that mutations inactivating the entangled genes were disfavored. Instead, the majority of lineages accumulated mutations within the regulatory region of ilvA. By reducing baseline relE expression, these more 'benign' mutations lowered circuit burden, which suppressed the accumulation of relE-inactivating mutations, thereby prolonging kill-switch function. Overall, this work demonstrates the utility of sequence entanglement paired with an adaptive laboratory evolution campaign to increase the evolutionary stability of burdensome synthetic circuits.


Assuntos
Homologia de Genes , Engenharia Genética , Sítios de Ligação , Escherichia coli/genética , Mutação , Ribossomos/genética , Pseudomonas/genética , Engenharia Genética/métodos
4.
Proc Natl Acad Sci U S A ; 119(18): e2115013119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35467987

RESUMO

Host-associated microbiomes, particularly gut microbiomes, often harbor related but distinct microbial lineages, but how this diversity arises and is maintained is not well understood. A prerequisite for lineage diversification is reproductive isolation imposed by barriers to gene flow. In host-associated microbes, genetic recombination can be disrupted by confinement to different hosts, for example following host speciation, or by niche partitioning within the same host. Taking advantage of the simple gut microbiome of social bees, we explore the diversification of two groups of gut-associated bacteria, Gilliamella and Snodgrassella, which have evolved for 80 million y with honey bees and bumble bees. Our analyses of sequenced genomes show that these lineages have diversified into discrete populations with limited gene flow. Divergence has occurred between symbionts of different host species and, in some cases, between symbiont lineages within a single host individual. Populations have acquired genes to adapt to specific hosts and ecological niches; for example, Gilliamella lineages differ markedly in abilities to degrade dietary polysaccharides and to use the resulting sugar components. Using engineered fluorescent bacteria in vivo, we show that Gilliamella lineages localize to different hindgut regions, corresponding to differences in their abilities to use spatially concentrated nitrogenous wastes of hosts. Our findings show that bee gut bacteria can diversify due to isolation in different host species and also due to spatial niche partitioning within individual hosts, leading to barriers to gene flow.


Assuntos
Microbioma Gastrointestinal , Microbiota , Adaptação Fisiológica , Animais , Bactérias/genética , Abelhas , Especificidade de Hospedeiro
5.
Paediatr Child Health ; 28(6): 338-343, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37744752

RESUMO

Youth (aged 15 to 29 years) account for one quarter of new HIV cases in Canada. Of those, men-who-have-sex-with-men make up one third to one half of new cases in that age range. Moreover, Indigenous youth are over-represented in the proportion of new cases. The use of emtricitabine/tenofovir disoproxil fumarate as pre-exposure prophylaxis (PrEP) significantly reduces the risk of HIV acquisition in adults. Its use was expanded to include youth over 35 kg by the U.S. Food and Drug Administration in 2018. However, PrEP uptake remains low among adolescents. Prescriber-identified barriers include lack of experience, concerns about safety, unfamiliarity with follow-up guidelines, and costs. This article provides an overview of PrEP for youth in Canada, and its associated safety and side effect profiles. Hypothetical case vignettes highlight some of the many demographics of youth who could benefit from PrEP. We present a novel flow diagram that explains the baseline workup, prescribing guidelines, and follow-up recommendations in the Canadian context. Additional counselling points highlight some of the key discussions that should be elicited when prescribing PrEP.

6.
Nucleic Acids Res ; 48(8): 4585-4600, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32232367

RESUMO

One goal of synthetic biology is to improve the efficiency and predictability of living cells by removing extraneous genes from their genomes. We demonstrate improved methods for engineering the genome of the metabolically versatile and naturally transformable bacterium Acinetobacter baylyi ADP1 and apply them to a genome streamlining project. In Golden Transformation, linear DNA fragments constructed by Golden Gate Assembly are directly added to cells to create targeted deletions, edits, or additions to the chromosome. We tested the dispensability of 55 regions of the ADP1 chromosome using Golden Transformation. The 18 successful multiple-gene deletions ranged in size from 21 to 183 kb and collectively accounted for 23.4% of its genome. The success of each multiple-gene deletion attempt could only be partially predicted on the basis of an existing collection of viable ADP1 single-gene deletion strains and a new transposon insertion sequencing (Tn-Seq) dataset that we generated. We further show that ADP1's native CRISPR/Cas locus is active and can be retargeted using Golden Transformation. We reprogrammed it to create a CRISPR-Lock, which validates that a gene has been successfully removed from the chromosome and prevents it from being reacquired. These methods can be used together to implement combinatorial routes to further genome streamlining and for more rapid and assured metabolic engineering of this versatile chassis organism.


Assuntos
Acinetobacter/genética , Engenharia Genética/métodos , Genoma Bacteriano , Acinetobacter/crescimento & desenvolvimento , Sistemas CRISPR-Cas , Deleção de Genes , Genes Bacterianos , Transformação Bacteriana
7.
Proc Natl Acad Sci U S A ; 116(49): 24712-24718, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740601

RESUMO

The thermal tolerance of an organism limits its ecological and geographic ranges and is potentially affected by dependence on temperature-sensitive symbiotic partners. Aphid species vary widely in heat sensitivity, but almost all aphids are dependent on the nutrient-provisioning intracellular bacterium Buchnera, which has evolved with aphids for 100 million years and which has a reduced genome potentially limiting heat tolerance. We addressed whether heat sensitivity of Buchnera underlies variation in thermal tolerance among 5 aphid species. We measured how heat exposure of juvenile aphids affects later survival, maturation time, and fecundity. At one extreme, heat exposure of Aphis gossypii enhanced fecundity and had no effect on the Buchnera titer. In contrast, heat suppressed Buchnera populations in Aphis fabae, which suffered elevated mortality, delayed development and reduced fecundity. Likewise, in Acyrthosiphon kondoi and Acyrthosiphon pisum, heat caused rapid declines in Buchnera numbers, as well as reduced survivorship, development rate, and fecundity. Fecundity following heat exposure is severely decreased by a Buchnera mutation that suppresses the transcriptional response of a gene encoding a small heat shock protein. Similarly, absence of this Buchnera heat shock gene may explain the heat sensitivity of Ap. fabae Fluorescent in situ hybridization revealed heat-induced deformation and shrinkage of bacteriocytes in heat-sensitive species but not in heat-tolerant species. Sensitive and tolerant species also differed in numbers and transcriptional responses of heat shock genes. These results show that shifts in Buchnera heat sensitivity contribute to host variation in heat tolerance.


Assuntos
Afídeos/fisiologia , Buchnera/fisiologia , Simbiose/fisiologia , Termotolerância/fisiologia , Animais , Afídeos/microbiologia , Buchnera/isolamento & purificação , Feminino , Especificidade de Hospedeiro/fisiologia , Temperatura Alta/efeitos adversos
8.
Proc Biol Sci ; 287(1933): 20201184, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32842927

RESUMO

The gut microbiome plays a critical role in the health of many animals. Honeybees are no exception, as they host a core microbiome that affects their nutrition and immune function. However, the relationship between the honeybee immune system and its gut symbionts is poorly understood. Here, we explore how the beneficial symbiont Snodgrassella alvi affects honeybee immune gene expression. We show that both live and heat-killed S. alvi protect honeybees from the opportunistic pathogen Serratia marcescens and lead to the expression of host antimicrobial peptides. Honeybee immune genes respond differently to live S. alvi compared to heat-killed S. alvi, the latter causing a more extensive immune expression response. We show a preference for Toll pathway upregulation over the Imd pathway in the presence of both live and heat-killed S. alvi. Finally, we find that live S. alvi aids in clearance of S. marcescens from the honeybee gut, supporting a potential role for the symbiont in colonization resistance. Our results show that colonization by the beneficial symbiont S. alvi triggers a replicable honeybee immune response. These responses may benefit the host and the symbiont, by helping to regulate gut microbial members and preventing overgrowth or invasion by opportunists.


Assuntos
Abelhas/fisiologia , Imunidade Inata , Neisseriaceae/fisiologia , Animais , Microbioma Gastrointestinal , Trato Gastrointestinal , Microbiota , Simbiose
9.
Proc Natl Acad Sci U S A ; 113(48): 13887-13892, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849596

RESUMO

Animal guts are often colonized by host-specialized bacterial species to the exclusion of other transient microorganisms, but the genetic basis of colonization ability is largely unknown. The bacterium Snodgrassella alvi is a dominant gut symbiont in honey bees, specialized in colonizing the hindgut epithelium. We developed methods for transposon-based mutagenesis in S. alvi and, using high-throughput DNA sequencing, screened genome-wide transposon insertion (Tn-seq) and transcriptome (RNA-seq) libraries to characterize both the essential genome and the genes facilitating host colonization. Comparison of Tn-seq results from laboratory cultures and from monoinoculated worker bees reveal that 519 of 2,226 protein-coding genes in S. alvi are essential in culture, whereas 399 are not essential but are beneficial for gut colonization. Genes facilitating colonization fall into three broad functional categories: extracellular interactions, metabolism, and stress responses. Extracellular components with strong fitness benefits in vivo include trimeric autotransporter adhesins, O antigens, and type IV pili (T4P). Experiments with T4P mutants establish that T4P in S. alvi likely function in attachment and biofilm formation, with knockouts experiencing a competitive disadvantage in vivo. Metabolic processes promoting colonization include essential amino acid biosynthesis and iron acquisition pathways, implying nutrient scarcity within the hindgut environment. Mechanisms to deal with various stressors, such as for the repair of double-stranded DNA breaks and protein quality control, are also critical in vivo. This genome-wide study identifies numerous genetic networks underlying colonization by a gut commensal in its native host environment, including some known from more targeted studies in other host-microbe symbioses.


Assuntos
Abelhas/genética , Microbioma Gastrointestinal/genética , Simbiose/genética , Transcriptoma/genética , Animais , Abelhas/microbiologia , Biofilmes/crescimento & desenvolvimento , Quebras de DNA de Cadeia Dupla , Gammaproteobacteria/genética , Trato Gastrointestinal/microbiologia , Genoma de Inseto/genética , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Hospedeiro/genética , Mutagênese/genética , Filogenia
10.
Int J Gynecol Cancer ; 27(3): 437-443, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28072594

RESUMO

OBJECTIVE: In 2001, the province of Ontario expanded cancer genetic testing eligibility to include all women with high-grade serous ovarian carcinoma (HGSC) of the ovary, fallopian tube, and peritoneum. The aim of this study was to determine the proportion of women who attended genetics counseling for consideration of BRCA1/2 gene analysis. We also sought to examine if regional differences in consultation rate exist across administrative health regions in the province of Ontario. METHODS: We identified all women with a pathological diagnosis of HGSC in the province of Ontario between 1997 until 2011. Our primary outcome was the 2-year rate of genetics consultation following a diagnosis of HGSC. We compared consultation rates over time and geographical regions and applied multiple logistic regression to identify predictors of genetics consultation. RESULTS: Of the 5412 women with a diagnosis of HGSC over the study period, 6.6% were seen for genetics consultation within 2 years of diagnosis. Factors predictive of genetics consultation included history of breast cancer (odds ratio [OR], 3.56; 95% confidence interval [CI], 1.87-6.78), era of diagnosis (2009-2011 vs 1997-2000; OR, 10.59; 95% CI, 5.02-22.33), and younger age at diagnosis (OR, 0.95; 95% CI, 0.94-0.97 for each additional year). No regional differences in consultation rate were seen. CONCLUSIONS: Despite an increasing rate across eras, a small proportion of women with HGSC undergo genetics consultation. Efforts are required to increase cancer genetics consultation in patients with HGSC in the province of Ontario.


Assuntos
Cistadenocarcinoma Seroso/genética , Aconselhamento Genético/estatística & dados numéricos , Testes Genéticos/estatística & dados numéricos , Neoplasias Ovarianas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Cistadenocarcinoma Seroso/epidemiologia , Cistadenocarcinoma Seroso/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Ontário/epidemiologia , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/patologia , Estudos Retrospectivos
12.
Am J Geriatr Psychiatry ; 23(12): 1259-1269, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26525997

RESUMO

OBJECTIVE: Guidelines worldwide have cautioned against the use of antipsychotics as first-line agents to treat neuropsychiatric symptoms of dementia. We aimed to investigate the changes over time in the dispensing of antipsychotics and other psychotropics among older adults with dementia living in long-term care facilities. METHODS: We used drug claims data from Ontario, Canada, to calculate quarterly rates of prescription dispensing of six psychotropic drug classes among all elderly (≥65 years of age) long-term care residents with dementia from January 1, 2004, to March 31, 2013. Psychotropic drugs were classified into the following categories: atypical and conventional antipsychotics, non-sedative and sedative antidepressants, anti-epileptics, and benzodiazepines. We used time-series analysis to assess trends over time. RESULTS: The study sample increased by 21% over the 10-year study period, from 49,251 patients to 59,785 patients. The majority of patients (within the range of 75%-79%) were dispensed at least one psychotropic medication. At the beginning of the study period atypical antipsychotics (38%) were the most frequently dispensed psychotropic, followed by benzodiazepines (28%), non-sedative antidepressants (27%), sedative antidepressants (17%), anti-epileptics (7%), and conventional antipsychotics (3%). Dispensing of anti-epileptics (2% increase) and conventional antipsychotics (1% decrease) displayed modest changes over time, but we observed more pronounced changes in dispensing of benzodiazepines (11% decrease) and atypical antipsychotics (4% decrease). Concurrently, we observed a substantial growth in the dispensing of both sedative (15% increase) and non-sedative (9% increase) antidepressants. The proportion of patients dispensed two or more psychotropic drug classes increased from 42% in 2004 to 50% in 2013. CONCLUSIONS: Utilization patterns of psychotropic drugs in institutionalized patients with dementia have changed over the past decade. Although their use declined slightly over the study period, atypical antipsychotics continue to be used at a high rate. A decline in the use of benzodiazepines along with an increased use of sedative and non-sedative antidepressants suggests that the latter class of drugs is being substituted for the former in the management of neuropsychiatric symptoms. Psychotropic polypharmacy continues to be highly prevalent in these patient samples.


Assuntos
Demência/tratamento farmacológico , Instituição de Longa Permanência para Idosos , Casas de Saúde , Psicotrópicos/uso terapêutico , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Humanos , Assistência de Longa Duração , Masculino , Ontário
13.
J Inflamm (Lond) ; 21(1): 7, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454423

RESUMO

BACKGROUND: Sepsis is a dysregulated systemic inflammatory response triggered by infection, resulting in organ dysfunction. A major challenge in clinical pediatrics is to identify sepsis early and then quickly intervene to reduce morbidity and mortality. As blood biomarkers hold promise as early sepsis diagnostic tools, we aimed to measure a large number of blood inflammatory biomarkers from pediatric sepsis patients to determine their predictive ability, as well as their correlations with clinical variables and illness severity scores. METHODS: Pediatric patients that met sepsis criteria were enrolled, and clinical data and blood samples were collected. Fifty-eight inflammatory plasma biomarker concentrations were determined using immunoassays. The data were analyzed with both conventional statistics and machine learning. RESULTS: Twenty sepsis patients were enrolled (median age 13 years), with infectious pathogens identified in 75%. Vasopressors were administered to 85% of patients, while 55% received invasive ventilation and 20% were ventilated non-invasively. A total of 24 inflammatory biomarkers were significantly different between sepsis patients and age/sex-matched healthy controls. Nine biomarkers (IL-6, IL-8, MCP-1, M-CSF, IL-1RA, hyaluronan, HSP70, MMP3, and MMP10) yielded AUC parameters > 0.9 (95% CIs: 0.837-1.000; p < 0.001). Boruta feature reduction yielded 6 critical biomarkers with their relative importance: IL-8 (12.2%), MCP-1 (11.6%), HSP70 (11.6%), hyaluronan (11.5%), M-CSF (11.5%), and IL-6 (11.5%); combinations of 2 biomarkers yielded AUC values of 1.00 (95% CI: 1.00-1.00; p < 0.001). Specific biomarkers strongly correlated with illness severity scoring, as well as other clinical variables. IL-3 specifically distinguished bacterial versus viral infection (p < 0.005). CONCLUSIONS: Specific inflammatory biomarkers were identified as markers of pediatric sepsis and strongly correlated to both clinical variables and sepsis severity.

14.
mBio ; 15(9): e0139224, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39105596

RESUMO

Mechanistic understanding of interactions in many host-microbe systems, including the honey bee microbiome, is limited by a lack of easy-to-use genome engineering approaches. To this end, we demonstrate a one-step genome engineering approach for making gene deletions and insertions in the chromosomes of honey bee gut bacterial symbionts. Electroporation of linear or non-replicating plasmid DNA containing an antibiotic resistance cassette flanked by regions with homology to a symbiont genome reliably results in chromosomal integration. This lightweight approach does not require expressing any exogenous recombination machinery. The high concentrations of large DNAs with long homology regions needed to make the process efficient can be readily produced using modern DNA synthesis and assembly methods. We use this approach to knock out genes, including genes involved in biofilm formation, and insert fluorescent protein genes into the chromosome of the betaproteobacterial bee gut symbiont Snodgrassella alvi. We are also able to engineer the genomes of multiple strains of S. alvi and another species, Snodgrassella communis, which is found in the bumble bee gut microbiome. Finally, we use the same method to engineer the chromosome of another bee symbiont, Bartonella apis, which is an alphaproteobacterium. As expected, gene knockout in S. alvi using this approach is recA-dependent, suggesting that this straightforward procedure can be applied to other microbes that lack convenient genome engineering methods. IMPORTANCE: Honey bees are ecologically and economically important crop pollinators with bacterial gut symbionts that influence their health. Microbiome-based strategies for studying or improving bee health have utilized wild-type or plasmid-engineered bacteria. We demonstrate that a straightforward, single-step method can be used to insert cassettes and replace genes in the chromosomes of multiple bee gut bacteria. This method can be used for investigating the mechanisms of host-microbe interactions in the bee gut community and stably engineering symbionts that benefit pollinator health.


Assuntos
Microbioma Gastrointestinal , Genoma Bacteriano , Simbiose , Animais , Abelhas/microbiologia , Simbiose/genética , Microbioma Gastrointestinal/genética , Engenharia Genética/métodos , Plasmídeos/genética
15.
Nat Commun ; 15(1): 6242, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048554

RESUMO

Engineered DNA will slow the growth of a host cell if it redirects limiting resources or otherwise interferes with homeostasis. Escape mutants that alleviate this burden can rapidly evolve and take over cell populations, making genetic engineering less reliable and predictable. Synthetic biologists often use genetic parts encoded on plasmids, but their burden is rarely characterized. We measured how 301 BioBrick plasmids affected Escherichia coli growth and found that 59 (19.6%) were burdensome, primarily because they depleted the limited gene expression resources of host cells. Overall, no BioBricks reduced the growth rate of E. coli by >45%, which agreed with a population genetic model that predicts such plasmids should be unclonable. We made this model available online for education ( https://barricklab.org/burden-model ) and added our burden measurements to the iGEM Registry. Our results establish a fundamental limit on what DNA constructs and genetic modifications can be successfully engineered into cells.


Assuntos
Escherichia coli , Engenharia Genética , Plasmídeos , Biologia Sintética , Biologia Sintética/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Plasmídeos/genética , Engenharia Genética/métodos , Modelos Genéticos
16.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38645188

RESUMO

Engineered DNA will slow the growth of a host cell if it redirects limiting resources or otherwise interferes with homeostasis. Populations of engineered cells can rapidly become dominated by "escape mutants" that evolve to alleviate this burden by inactivating the intended function. Synthetic biologists working with bacteria rely on genetic parts and devices encoded on plasmids, but the burden of different engineered DNA sequences is rarely characterized. We measured how 301 BioBricks on high-copy plasmids affected the growth rate of Escherichia coli. Of these, 59 (19.6%) negatively impacted growth. The burden imposed by engineered DNA is commonly associated with diverting ribosomes or other gene expression factors away from producing endogenous genes that are essential for cellular replication. In line with this expectation, BioBricks exhibiting burden were more likely to contain highly active constitutive promoters and strong ribosome binding sites. By monitoring how much each BioBrick reduced expression of a chromosomal GFP reporter, we found that the burden of most, but not all, BioBricks could be wholly explained by diversion of gene expression resources. Overall, no BioBricks reduced the growth rate of E. coli by >45%, which agreed with a population genetic model that predicts such plasmids should be "unclonable" because escape mutants will take over during growth of a bacterial colony or small laboratory culture from a transformed cell. We made this model available as an interactive web tool for synthetic biology education and added our burden measurements to the iGEM Registry descriptions of each BioBrick.

17.
J Biol Chem ; 287(44): 37185-94, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22923614

RESUMO

Following pulmonary infection with Francisella tularensis, we observed an unexpected but significant reduction of alkaline phosphatase, an enzyme normally up-regulated following inflammation. However, no reduction was observed in mice infected with a closely related gram-negative pneumonic organism (Klebsiella pneumoniae) suggesting the inhibition may be Francisella-specific. In similar fashion to in vivo observations, addition of Francisella lysate to exogenous alkaline phosphatase (tissue-nonspecific isozyme) was inhibitory. Partial purification and subsequent proteomic analysis indicated the inhibitory factor to be the heat shock protein DnaK. Incubation with increasing amounts of anti-DnaK antibody reduced the inhibitory effect in a dose-dependent manner. Furthermore, DnaK contains an adenosine triphosphate binding domain at its N terminus, and addition of adenosine triphosphate enhances dissociation of DnaK with its target protein, e.g. alkaline phosphatase. Addition of adenosine triphosphate resulted in decreased DnaK co-immunoprecipitated with alkaline phosphatase as well as reduction of Francisella-mediated alkaline phosphatase inhibition further supporting the binding of Francisella DnaK to alkaline phosphatase. Release of DnaK via secretion and/or bacterial cell lysis into the extracellular milieu and inhibition of plasma alkaline phosphatase could promote an orchestrated, inflammatory response advantageous to Francisella.


Assuntos
Fosfatase Alcalina/sangue , Bacteriemia/microbiologia , Proteínas de Bactérias/fisiologia , Francisella/fisiologia , Proteínas de Choque Térmico HSP70/fisiologia , Tularemia/microbiologia , Trifosfato de Adenosina/química , Fosfatase Alcalina/antagonistas & inibidores , Animais , Carga Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Chaperonina 60/metabolismo , Cromatografia DEAE-Celulose , Feminino , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/isolamento & purificação , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Interações Hospedeiro-Patógeno , Camundongos , Camundongos Endogâmicos BALB C , Peso Molecular , Fragmentos de Peptídeos/química , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray
18.
Biol Reprod ; 89(6): 139, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24174571

RESUMO

Dynamic control of maternal blood flow to the placenta is critical for healthy pregnancy. In many tissues, microvasculature arteries control the flow. The uterine/endometrial vascular bed changes during pregnancy include physiological remodeling of spiral arteries from constricted artery-like structures to dilated vein-like structures between Gestation Day 8 (gd8) and gd12 in mice and wk 12-16 in humans. These changes occur, in part, due to local environmental changes such as decidualization, recruitment of maternal uterine natural killer cells, and invasion of conceptus-derived trophoblasts. No current preparations permit in vivo testing of decidual microvascular reactivity. We report an in vivo intravital fluorescence microscopy model that permits functional study of the entire uterine microvascular bed (uterine, arcuate, radial, basal, and spiral arteries) in gravid C57BL/6 mice. Vascular reactivities were measured at gd8 prespiral arterial remodeling and gd12 (postremodeling) to a range of concentrations of adenosine (10(-8)-10(-6) M), acetylcholine (10(-7)-10(-5) M), phenylephrine (10(-7)-10(-5) M), and angiotensin II (10(-8)-10(-6) M). At baseline, each arterial branch order was significantly more dilated on gd12 than gd8. Each microvascular level responded to each agonist on gd8 and gd12. At gd12, vasodilation to adenosine was attenuated in uterine, arcuate, and basal arteries, while constrictor activity to angiotensin II was enhanced in uterine and arcuate arteries. The tendency for increasing vasoconstriction between gd8 to gd12 and the constrictor responses of modified spiral arteries were unexpected findings that may reflect influences of the intact in vivo environment rather than inherent properties of the vessels and may be relevant to ongoing human pregnancies.


Assuntos
Endométrio/irrigação sanguínea , Gravidez/fisiologia , Artéria Uterina/efeitos dos fármacos , Artéria Uterina/fisiologia , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia , Acetilcolina/farmacologia , Adenosina/farmacologia , Angiotensina II/farmacologia , Animais , Endométrio/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenilefrina/farmacologia
19.
BMJ Open Qual ; 12(3)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37612047

RESUMO

Microbiology sample swabs may be unsuccessful or rejected for a variety of reasons. Typically, errors occur in the preanalytical phase of sample collection. Errors with collection, handling and transport can lead to the need to repeat specimen collection. Unsuccessful specimens contribute to delays in diagnosis, increased patient stress and increased healthcare costs. An audit of sample swabs from London Health Sciences Centre Children's Hospital from August through October 2021 yielded complete success rates of 100% for ear and eye culture swabs, 98.1% for methicillin-resistant Staphylococcus aureus swabs and 88.9% for wound swabs. This project aimed to improve wound swab success to 95% on the paediatric inpatient and paediatric emergency departments by May 2022.Stakeholders from paediatric clinical services including physicians, nurses and the laboratory medicine team at our centre were engaged to guide quality improvement interventions to improve specimen success rate. Based on feedback, we implemented visual aids to our electronic laboratory test information guide. Additionally, visual reminders of correct sample collection equipment were placed in high traffic areas for nursing staff.After the interventions were implemented, a three-month follow-up showed that wound swab success rate rose to 95.3%. This study achieved its aim of improving wound swab success rate to 95%. It adds to the growing pool of evidence that preanalytical phase intervention such as visual aids can increase swab success rates, in healthcare settings.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Humanos , Criança , Melhoria de Qualidade , Pacientes Internados , Recursos Audiovisuais , Análise por Conglomerados
20.
Nat Protoc ; 18(3): 902-928, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36460809

RESUMO

Honey bees are indispensable pollinators and model organisms for studying social behavior, development and cognition. However, their eusociality makes it difficult to use standard forward genetic approaches to study gene function. Most functional genomics studies in bees currently utilize double-stranded RNA (dsRNA) injection or feeding to induce RNAi-mediated knockdown of a gene of interest. However, dsRNA injection is laborious and harmful, and dsRNA feeding is difficult to scale cheaply. Further, both methods require repeated dsRNA administration to ensure a continued RNAi response. To fill this gap, we engineered the bee gut bacterium Snodgrassella alvi to induce a sustained host RNA interference response that reduces expression of a targeted gene. To employ this functional genomics using engineered symbionts (FUGUES) procedure, a dsRNA expression plasmid is cloned in Escherichia coli using Golden Gate assembly and then transferred to S. alvi. Adult worker bees are then colonized with engineered S. alvi. Finally, gene knockdown is verified through qRT-PCR, and bee phenotypes of interest can be further assessed. Expression of targeted genes is reduced by as much as 50-75% throughout the entire bee body by 5 d after colonization. This protocol can be accomplished in 4 weeks by bee researchers with microbiology and molecular cloning skills. FUGUES currently offers a streamlined and scalable approach for studying the biology of honey bees. Engineering other microbial symbionts to influence their hosts in ways that are similar to those described in this protocol may prove useful for studying additional insect and animal species in the future.


Assuntos
Genômica , RNA de Cadeia Dupla , Abelhas/genética , Animais , Interferência de RNA , RNA de Cadeia Dupla/genética , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa