Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 33(6): 7694-7706, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31021652

RESUMO

Conditions of extended bed rest and limb immobilization can initiate rapid and significant loss of skeletal muscle mass and function. Physical rehabilitation is standard practice following a period of disuse, yet mobility may be severely compromised, and recovery is commonly delayed or incomplete in special populations. Thus, a novel approach toward recovery of muscle mass is highly desired. Pericytes [neuron-glial antigen 2 (NG2)+CD31-CD45- (Lineage- [Lin-]) and CD146+Lin-] demonstrate capacity to facilitate muscle repair, yet the ability to enhance myofiber growth following disuse is unknown. In the current study, 3-4-mo-old mice were unilaterally immobilized for 14 d (IM) or immobilized for 14 d followed by 14 d of remobilization (RE). Flow cytometry and targeted gene expression analyses were completed to assess pericyte quantity and function following IM and RE. In addition, a transplantation study was conducted to assess the impact of pericytes on recovery. Results from targeted analyses suggest minimal impact of disuse on pericyte gene expression, yet NG2+Lin- pericyte quantity is reduced following IM (P < 0.05). Remarkably, pericyte transplantation recovered losses in myofiber cross-sectional area and the capillary-to-fiber ratio following RE, whereas deficits remained with vehicle alone (P = 0.01). These findings provide the first evidence that pericytes effectively rehabilitate skeletal muscle mass following disuse atrophy.-Munroe, M., Dvoretskiy, S., Lopez, A., Leong, J., Dyle, M. C., Kong, H., Adams, C. M., Boppart, M. D. Pericyte transplantation improves skeletal muscle recovery following hindlimb immobilization.


Assuntos
Transplante de Células , Elevação dos Membros Posteriores , Músculo Esquelético/fisiopatologia , Pericitos/transplante , Animais , Capilares/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/irrigação sanguínea , Atrofia Muscular/reabilitação , Pericitos/metabolismo
2.
Nanomedicine ; 28: 102215, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32438106

RESUMO

Mesenchymal stem cells are promising medicine for treating diseases and tissue defects because of their innate ability to secrete therapeutic factors. Intravenous delivery of stem cells, although favored for its minimal invasiveness, is often plagued by low cellular engraftment in the target tissue. To this end, this study hypothesizes that in situ activation of cellular expression of CXC chemokine 4 (CXCR4) would significantly improve cellular migration to injured tissue. This hypothesis was examined by tethering the surface of stem cells with poly(D,L-lactide-co-glycolide)-block-hyaluronic acid (HA) particles containing stromal cell-derived factor-1α, a model chemokine to sensitize CXCR4. The HA blocks in the particles enhanced the association rate constant to stem cells by 3.3-fold, and in turn, increased the number of cells expressing CXCR4 receptors. Consequently, these cells displayed 1.2-fold higher transendothelial migration in vitro and 1.7-fold greater trafficking to the ischemic hindlimb of a mouse than that of the untethered cells.


Assuntos
Isquemia/metabolismo , Receptores CXCR4/metabolismo , Células-Tronco/citologia , Animais , Quimiocina CXCL12/metabolismo , Membro Posterior/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células-Tronco/metabolismo
3.
Small ; 15(21): e1900765, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30950171

RESUMO

Various antioxidants are being used to neutralize the harmful effects of reactive oxygen species (ROS) overproduced in diseased tissues and contaminated environments. Polymer-directed crystallization of antioxidants has attracted attention as a way to control drug efficacy through molecular dissolution. However, most recrystallized antioxidants undertake continuous dissolution independent of the ROS level, thus causing side-effects. This study demonstrates a unique method to assemble antioxidant crystals that modulate their dissolution rate in response to the ROS level. We hypothesized that antioxidants recrystallized using a ROS-labile polymer would be triggered to dissolve when the ROS level increases. We examined this hypothesis by using catechin as a model antioxidant. Catechin was recrystallized using polyethylenimine cross-linked with ROS-labile diselanediylbis-(ethane-2,1-diyl)-diacrylate. Catechin crystallized with the ROS-labile polymer displays accelerated dissolution proportional to the H2 O2 concentration. The ROS-responsive catechin crystals protect vascular cells from oxidative insults by activating intracellular glutathione peroxidase expression and, in turn, inhibiting an increase in the intracellular oxidative stress. In addition, ROS-responsive catechin crystals alleviate changes in the heart rate of Daphnia magna in oxidative media. We propose that the results of this study would be broadly useful for improving the therapeutic efficacy of a broad array of drug compounds.


Assuntos
Catequina/química , Catequina/farmacologia , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Daphnia , Frequência Cardíaca/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
4.
Langmuir ; 34(38): 11242-11252, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30173514

RESUMO

Hydrogen peroxide (H2O2) is an attractive chemical because of its bleaching properties in paper and pulp industry and as a disinfectant in the food, water, and medical industries. However, it is important to monitor the residual H2O2 level after its usage and prevent any unintended health problems or chemical reactions. Most H2O2 sensors often utilize fluorophores or electrical circuitry that requires an additional irradiation or a digital display. To this end, this study presents a 3,3',5,5'-tetramethylbenzidine (TMB)/horseradish peroxidase (HRP)-loaded patch that alerts the presence of high H2O2 levels by generating a visible blue color. We hypothesized that water-insoluble TMB immobilized within mesoporous silica particles of proper pore diameter and structure would act as a colorimetric indicator through the H2O2-mediated oxidation within a cross-linked patch. We examined this hypothesis by immobilizing TMB molecules in mesoporous silica particles with 2 and 7 nm diameter cylindrical pores as well as on nonporous silica particles. Then, we loaded these TMB-silica particles and HRP in a porous alginate patch via sequential in situ cross-linking reaction and lyophilization. In the presence of 25-5000 µM H2O2, which simulate H2O2 concentrations found in residual disinfecting fluids, the patch loaded with TMB-mesoporous silica particles with 7 nm diameter pores generated a distinct blue color with varying intensities depending on the H2O2 concentration. The design principles demonstrated in this study should be applicable to a broad array of sensors to be integrated into a moldable, three-dimensional matrix.


Assuntos
Benzidinas/química , Compostos Cromogênicos/química , Peróxido de Hidrogênio/análise , Dióxido de Silício/química , Adsorção , Alginatos/química , Armoracia/enzimologia , Colorimetria/métodos , Peroxidase do Rábano Silvestre/química , Cinética , Oxirredução , Porosidade , Dióxido de Silício/síntese química
5.
Nanomedicine ; 14(8): 2666-2677, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30017961

RESUMO

Herein, we report reactive oxygen species (ROS)- and pH-responsive biodegradable polyethylene glycol (PEG)-block-polycarbonate by installing thioether groups onto the polycarbonate and its self-assembled core/shell structured micelles for anticancer drug delivery. Oxidation of thioethers to sulfoxide and subsequently sulfone induces an increase in hydrophilicity, resulting in more hydrophilic micellar core. This phase-change caused the micelles to swell and enhance cargo release. Carboxylic acid groups have also been installed onto thioether-containing polycarbonate to promote loading of amine-containing anticancer doxorubicin through electrostatic interaction. Urea-functionalized thioether-containing PEG-block-polycarbonates were synthesized to mix with the acid-functionalized PEG-block-polycarbonate for stabilizing micelle structure through hydrogen-bonding interaction. The mixed micelles were 50 nm in diameter and had a 25 wt% loading capacity for doxorubicin. Enhanced drug release from the micelles was triggered by low pH and high content of ROS. Drug-encapsulated micelles accumulated in tumors through leaky tumor vasculature in PC-3 human prostate cancer xenograft mouse model.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Nanopartículas/administração & dosagem , Polímeros/química , Neoplasias da Próstata/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Portadores de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Nanopartículas/química , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Small ; 12(14): 1928-34, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26891016

RESUMO

Infectious diseases and the increasing threat of worldwide pandemics have underscored the importance of antibiotics and hygiene. Intensive efforts have been devoted to developing new antibiotics to meet the rapidly growing demand. In particular, advancing the knowledge of the structure-property-activity relationship is critical to expedite the design and development of novel antimicrobial with the needed potential and efficacy. Herein, a series of new antimicrobial imidazolium oligomers are developed with the rational manipulation of terminal group's hydrophobicity. These materials exhibit superior activity, excellent selectivity, ultrafast killing (>99.7% killing within 30 s), and desirable self-gelling properties. Molecular dynamic simulations reveal the delicate effect of structural changes on the translocation motion across the microbial cell membrane. The energy barrier of the translocation process analyzed by free energy calculations provides clear kinetic information to suggest that the spontaneous penetration requires a very short timescale of seconds to minutes for the new imidazolium oligomers.


Assuntos
Anti-Infecciosos/farmacologia , Géis , Imidazóis/farmacologia , Polímeros/farmacologia , Anti-Infecciosos/química , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/ultraestrutura , Imidazóis/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Polímeros/química , Relação Estrutura-Atividade
7.
Adv Healthc Mater ; 12(19): e2201560, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37071479

RESUMO

Anticancer drug resistance is a large contributing factor to the global mortality rate of cancer patients. Anticancer macromolecules such as polymers have been recently reported to overcome this issue. Anticancer macromolecules have unselective toxicity because they are highly positively charged. Herein, an anionic biodegradable polycarbonate carrier is synthesized and utilized to form nanocomplexes with an anticancer polycarbonate via self-assembly to neutralize its positive charges. Biotin is conjugated to the anionic carrier and serves as cancer cell-targeting moiety. The nanoparticles have sizes of < 130 nm with anticancer polymer loading levels of 38-49%. Unlike the small molecular anticancer drug doxorubicin, the nanocomplexes effectively inhibit the growth of both drug-susceptible MCF7 and drug-resistant MCF7/ADR human breast cancer cell lines with low half maximal inhibitory concentration (IC50 ). The nanocomplexes increase the anticancer polymer's in vivo half-life from 1 to 6-8 h, and rapidly kill BT474 human breast cancer cells primarily via an apoptotic mechanism. The nanocomplexes significantly increase the median lethal dose (LD50 ) and reduce the injection site toxicity of the anticancer polymer. They suppress tumor growth by 32-56% without causing any damage to the liver and kidneys. These nanocomplexes may potentially be used for cancer treatment to overcome drug resistance.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Meia-Vida , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Nanopartículas/toxicidade , Polímeros , Neoplasias da Mama/tratamento farmacológico
8.
J Control Release ; 345: 464-474, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35331785

RESUMO

Cationic synthetic anticancer polymers and peptides have attracted increasing attention for advancing cancer treatment without causing drug resistance development. To circumvent in vivo instability and toxicity caused by cationic charges of the anticancer polymers/peptides, we report, for the first time, a nanoparticulate delivery system self-assembled from a negatively charged pH-sensitive polypeptide poly(ethylene glycol)-b-poly(ʟ-lysine)-graft-cyclohexene-1,2-dicarboxylic anhydride and a cationic anticancer polypeptide guanidinium-functionalized poly(ʟ-lysine) (PLL-Gua) via electrostatic interaction. The formation of nanoparticles (Gua-NPs) neutralized the positive charges of PLL-Gua. Both PLL-Gua and Gua-NPs killed cancer cells in a dose- and time-dependent manner, and induced cell death via apoptosis. Confocal microscopic studies demonstrated that PLL-Gua and Gua-NPs readily entered cancer cells, and Gua-NPs were taken up by the cells via endocytosis. Notably, Gua-NPs and PLL-Gua exhibited similar in vitro anticancer efficacy against MCF-7 and resistant MCF-7/ADR. PLL-Gua and Gua-NPs also induced similar morphological changes in MCF-7/ADR cells compared to MCF-7 cells, further indicating their ability to bypass drug resistance mechanisms in the MCF-7/ADR cells. More importantly, Gua-NPs with higher LD50 and enhanced tumor accumulation significantly inhibited tumor growth with negligible side effects in vivo. Our findings shed light on the in vivo delivery of anticancer peptides and opened a new avenue for cancer treatment.


Assuntos
Antineoplásicos , Nanopartículas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Nanopartículas/ultraestrutura , Peptídeos , Polietilenoglicóis , Polímeros
9.
Adv Healthc Mater ; 11(9): e2101898, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34694749

RESUMO

Disinfection using effective antimicrobials is essential in preventing the spread of infectious diseases. This COVID-19 pandemic has brought the need for effective disinfectants to greater attention due to the fast transmission of SARS-CoV-2. Current active ingredients in disinfectants are small molecules that microorganisms can develop resistance against after repeated long-term use and may penetrate the skin, causing harmful side-effects. To this end, a series of membrane-disrupting polyionenes that contain quaternary ammoniums and varying hydrophobic components is synthesized. They are effective against bacteria and fungi. They are also fast acting against clinically isolated drug resistant strains of bacteria. Formulating them with thickeners and nonionic surfactants do not affect their killing efficiency. These polyionenes are also effective in preventing infections caused by nonenveloped and enveloped viruses. Their effectiveness against mouse coronavirus (i.e., mouse hepatitis virus-MHV) depends on their hydrophobicity. The polyionenes with optimal compositions inactivates MHV completely in 30 s. More importantly, the polyionenes are effective in inhibiting SARS-CoV-2 by >99.999% within 30 s. While they are effective against the microorganisms, they do not cause damage to the skin and have a high oral lethal dose. Overall, these polyionenes are promising active ingredients for disinfection and prevention of viral and microbial infections.


Assuntos
Anti-Infecciosos , COVID-19 , Desinfetantes , Animais , Antibacterianos , Anti-Infecciosos/farmacologia , Antivirais/farmacologia , Bactérias , COVID-19/prevenção & controle , Desinfetantes/farmacologia , Humanos , Camundongos , Pandemias/prevenção & controle , Polímeros/farmacologia , SARS-CoV-2
10.
Biomater Sci ; 8(24): 6920-6929, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32959808

RESUMO

The increasing emergence and spread of antimicrobial resistance are urgent and important global challenges today. The clinical pipeline is lacking in innovative drugs that avoid the development of drug resistance. Macromolecular antimicrobials kill bacteria and fungi through physical disruptions to the cell membrane, which is difficult for microbes to overcome. Recently, we reported antimicrobial polycarbonates that kill microbes via two different mechanisms. Polycarbonates functionalized with quaternary ammonium disrupted the lipid bilayer membrane of the microbes, while polycarbonates functionalized with guanidinium translocated the membrane and precipitated cytosolic components. We hypothesized that the combination of these two distinct mechanisms would result in a more than additive increase in antimicrobial efficacy. Block and random copolymers containing both cationic groups had similar minimum inhibitory concentrations (MICs) as the guanidinium homopolymer on 5 representatives of the ESKAPE pathogens. Interestingly, the random copolymer killed P. aeruginosa and A. baumannii more rapidly than the block copolymer and the guanidinium homopolymer with the same number of guanidinium groups. Like quaternary ammonium homopolymer, the copolymers killed the bacteria via a membrane-disruptive mechanism. Then, we simply mixed quaternary ammonium homopolymer and guanidinium homopolymer, and studied antimicrobial activity of the combination at various concentrations. Checkerboard assay results showed that the combination of the polymers, in general, achieved a synergistic or additive effect in inhibiting the growth of bacteria. At concentrations where it exibited a synergistic or additive effect in inhibiting bacterial growth, the combination killed the bacteria effectively (99%-99.9% killing efficiency) although the individual polymers at these concentrations did not exert bactericidal activity. Therefore, it is essential to have the two functional groups on separate molecules to provide synergism. This study provides a basic understanding of polymer design with different cationic groups.


Assuntos
Compostos de Amônio , Anti-Infecciosos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Guanidina , Testes de Sensibilidade Microbiana , Polímeros
11.
ACS Nano ; 14(5): 5298-5313, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32243129

RESUMO

Stem cell transplantation has been a promising treatment for peripheral arterial diseases in the past decade. Stem cells act as living bioreactors of paracrine factors that orchestrate tissue regeneration. Prestimulated adipose-derived stem cells (ADSCs) have been proposed as potential candidates but have been met with challenges in activating their secretory activities for clinical use. Here, we propose that tethering the ADSC surface with nanoparticles releasing tumor necrosis factor α (TNFα), named nanostimulator, would stimulate cellular secretory activity in situ. We examined this hypothesis by complexing octadecylamine-grafted hyaluronic acid onto a liposomal carrier of TNFα. Hyaluronic acid increased the liposomal stability and association to CD44 on ADSC surface. ADSCs tethered with these TNFα carriers exhibited up-regulated secretion of proangiogenic vascular endothelial growth factor and immunomodulatory prosteoglandin E2 (PGE2) while decreasing secretion of antiangiogenic pigment epithelium-derived factors. Accordingly, ADSCs tethered with nanostimulators promoted vascularization in a 3D microvascular chip and enhanced recovery of perfusion, walking, and muscle mass in a murine ischemic hindlimb compared to untreated ADSCs. We propose that this surface tethering strategy for in situ stimulation of stem cells would replace the costly and cumbersome preconditioning process and expedite clinical use of stem cells for improved treatments of various injuries and diseases.


Assuntos
Células-Tronco , Fator A de Crescimento do Endotélio Vascular , Tecido Adiposo , Animais , Células Cultivadas , Inflamação , Camundongos , Músculos , Transplante de Células-Tronco
12.
Biomaterials ; 201: 1-15, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30784768

RESUMO

Mesenchymal stem cells are the new generation of medicine for treating numerous vascular diseases and tissue defects because of their ability to secrete therapeutic factors. Poor cellular survival in an oxidative diseased tissue, however, hinders the therapeutic efficacy. To this end, we hypothesized that tethering the surface of stem cells with colloidal particles capable of discharging antioxidant cargos in response to elevated levels of hydrogen peroxide (H2O2) would maintain survival and therapeutic activity of the stem cells. We examined this hypothesis by encapsulating epigallocatechin gallate (EGCG) and manganese oxide (MnO2) nanocatalysts into particles comprising poly(d,l-lactide-co-glycolide)-block-hyaluronic acid. The MnO2 nanocatalysts catalyzed the decomposition of H2O2 into oxygen gas, which increased the internal pressure of particles and accelerated the release of EGCG by 1.5-fold. Consequently, stem cells exhibited 1.2-fold higher metabolic activity and 2.8-fold higher secretion level of pro-angiogenic factor in sub-lethal H2O2 concentrations. These stem cells, in turn, performed a greater angiogenic potential with doubled number of newly formed mature blood vessels. We envisage that the results of this study will contribute to improving the therapeutic efficacy of a wide array of stem cells.


Assuntos
Coloides/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Catequina/análogos & derivados , Catequina/química , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Compostos de Manganês/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Óxidos/química , Espécies Reativas de Oxigênio/metabolismo
13.
Acta Biomater ; 94: 268-280, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31129359

RESUMO

Multidrug resistant (MDR) Klebsiella pneumoniae is a major cause of healthcare-associated infections around the world, with attendant high rates of morbidity and mortality. Progressive reduction in potency of antibiotics capable of treating MDR K. pneumoniae infections - including lung infection - as a consequence of escalating drug resistance provides the motivation to develop drug candidates targeting MDR K. pneumoniae. We recently reported degradable broad-spectrum antimicrobial guanidinium-functionalized polycarbonates with unique antimicrobial mechanism - membrane translocation followed by precipitation of cytosolic materials. These polymers exhibited high potency against bacteria with negligible toxicity. The polymer with ethyl spacer between the quanidinium group and the polymer backbone (pEt_20) showed excellent in vivo efficacy for treating MDR K. pneumoniae-caused peritonitis in mice. In this study, the structures of the polymers were optimized for the treatment of MDR Klebsiella pneumoniae lung infection. Specifically, in vitro antimicrobial activity and selectivity of guanidinium-functionalized polycarbonates containing the same number of guanidinium groups but of a shorter chain length and a structural analogue containing a thiouronium moiety as the pendent cationic group were evaluated. The polymers with optimal compositions and varying hydrophobicity were assessed against 25 clinically isolated K. pneumonia strains for antimicrobial activity and killing kinetics. The results showed that the polymers killed the bacteria more efficiently than clinically used antibiotics, and repeated use of the polymers did not cause drug resistance in K. pneumonia. Particularly, the polymer with butyl spacer (pBut_20) self-assembled into micelles at high concentrations, where the hydrophobic component was shielded in the micellar core, preventing interacting with mammalian cells. A subtle change in the hydrophobicity increased the antimicrobial activity while reducing in vivo toxicity. The in vivo efficacy studies showed that pBut_20 alleviated K. pneumonia lung infection without inducing damage to major organs. Taken together, pBut_20 is promising for treating MDR Klebsiella pneumoniae lung infection in vivo. STATEMENT OF SIGNIFICANCE: Multidrug resistant (MDR) Klebsiella pneumoniae is a major cause of healthcare-associated infections, with attendant high rates of morbidity and mortality. The progressive reduction in antibiotics capable of treating MDR K. pneumoniae infections - including lung infection - as a consequence of escalating drug resistance rates provides the motivation to develop drug candidates. In this study, we report a degradable guanidinium-functionalized polycarbonate with unexpected antimicrobial activity and selectivity towards MDR Klebsiella pneumoniae. A subtle change in polymer hydrophobicity increases antimicrobial activity while reducing in vivo toxicity due to self-assembly at high concentrations. The polymer with optimal composition alleviates Klebsiella pneumonia lung infection without inducing damage to major organs. The polymer is promising for treating MDR Klebsiella pneumoniae lung infection in vivo.


Assuntos
Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella/tratamento farmacológico , Pneumopatias/tratamento farmacológico , Pneumonia Bacteriana/tratamento farmacológico , Cimento de Policarboxilato/farmacologia , Animais , Antibacterianos/farmacologia , Materiais Biocompatíveis , Linhagem Celular , Membrana Celular/metabolismo , Citosol/metabolismo , Células Epiteliais/efeitos dos fármacos , Feminino , Guanidina/farmacologia , Humanos , Imipenem/farmacologia , Cinética , Klebsiella pneumoniae , Pneumopatias/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Polímeros/química , Ligação Proteica
14.
Adv Healthc Mater ; 7(8): e1701276, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29334183

RESUMO

Engineered polymer vesicles, termed as polymersomes, confer a flexibility to control their structure, properties, and functionality. Self-assembly of amphiphilic copolymers leads to vesicles consisting of a hydrophobic bilayer membrane and hydrophilic core, each of which is loaded with a wide array of small and large molecules of interests. As such, polymersomes are increasingly being studied as carriers of imaging probes and therapeutic drugs. Effective delivery of polymersomes necessitates careful design of polymersomes. Therefore, this review article discusses the design strategies of polymersomes developed for enhanced transport and efficacy of imaging probes and therapeutic drugs. In particular, the article focuses on overviewing technologies to regulate the size, structure, shape, surface activity, and stimuli- responsiveness of polymersomes and discussing the extent to which these properties and structure of polymersomes influence the efficacy of cargo molecules. Taken together with future considerations, this article will serve to improve the controllability of polymersome functions and accelerate the use of polymersomes in biomedical applications.


Assuntos
Portadores de Fármacos , Nanopartículas , Patologia Molecular/métodos , Polímeros , Animais , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Tamanho da Partícula , Polímeros/química , Polímeros/uso terapêutico
15.
ACS Appl Mater Interfaces ; 10(42): 35685-35692, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30107112

RESUMO

Bacterial biofilms form on and within many living tissues, medical devices, and engineered materials, threatening human health and sustainability. Removing biofilms remains a grand challenge despite tremendous efforts made so far, particularly when they are formed in confined spaces. One primary cause is the limited transport of antibacterial agents into extracellular polymeric substances (EPS) of the biofilm. In this study, we hypothesized that a microparticle engineered to be self-locomotive with microbubbles would clean a structure fouled by biofilm by fracturing the EPS and subsequently improving transports of the antiseptic reagent. We examined this hypothesis by doping a hollow cylinder-shaped diatom biosilica with manganese oxide (MnO2) nanosheets. In an antiseptic H2O2 solution, the diatoms doped by MnO2 nanosheets, denoted as diatom bubbler, discharged oxygen gas bubbles continuously and became self-motile. Subsequently, the diatoms infiltrated the bacterial biofilm formed on either flat or microgrooved silicon substrates and continued to generate microbubbles. The resulting microbubbles merged and converted surface energy to mechanical energy high enough to fracture the matrix of biofilm. Consequently, H2O2 molecules diffused into the biofilm and killed most bacterial cells. Overall, this study provides a unique and powerful tool that can significantly impact current efforts to clean a wide array of biofouled products and devices.


Assuntos
Biofilmes , Espaços Confinados , Diatomáceas/química , Microbolhas , Peróxido de Hidrogênio/química , Compostos de Manganês/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Óxidos/química , Soluções
16.
ACS Appl Mater Interfaces ; 9(41): 35642-35650, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28961399

RESUMO

Overproduced reactive oxygen species (ROS) are closely related to various health problems including inflammation, infection, and cancer. Abnormally high ROS levels can cause serious oxidative damage to biomolecules, cells, and tissues. A series of nano- or microsized particles has been developed to reduce the oxidative stress level by delivering antioxidant drugs. However, most systems are often plagued by slow molecular discharge, driven by diffusion. Herein, this study demonstrates the polymeric particles whose internal pressure can increase upon exposure to H2O2, one of the ROS, and in turn, discharge antioxidants actively. The on-demand pressurized particles are assembled by simultaneously encapsulating water-dispersible manganese oxide (MnO2) nanosheets and green tea derived epigallocatechin gallate (EGCG) molecules into a poly(lactic-co-glycolic acid) (PLGA) spherical shell. In the presence of H2O2, the MnO2 nanosheets in the PLGA particle generate oxygen gas by decomposing H2O2 and increase the internal pressure. The pressurized PLGA particles release antioxidative EGCG actively and, in turn, protect vascular and brain tissues from oxidative damage more effectively than the particles without MnO2 nanosheets. This H2O2 responsive, self-pressurizing particle system would be useful to deliver a wide array of molecular cargos in response to the oxidation level.

17.
Nanoscale ; 9(16): 5194-5204, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28397883

RESUMO

Recently, polymeric micelles self-assembled from amphiphilic polymers have been studied for various industrial and biomedical applications. This nanoparticle self-assembly typically occurs in a solvent-exchange process. In this process, the quality of the resulting particles is uncontrollably mediated by polymeric solubility and mixing conditions. Here, we hypothesized that improving the solubility of an amphiphilic polymer in an organic solvent via chemical modification while controlling the mixing rate of organic and aqueous phases would enhance control over particle morphology and size. We examined this hypothesis by synthesizing a poly(2-hydroxyethyl)aspartamide (PHEA) grafted with controlled numbers of octadecyl (C18) chains and oligovaline groups (termed "oligovaline-PHEA-C18"). The mixing rate of DMF and water was controlled either by microfluidic mixing of laminar DMF and water flows or through turbulent bulk mixing. Interestingly, oligovaline-PHEA-C18 exhibited an increased solubility in DMF compared with PHEA-C18, as demonstrated by an increase of mixing energy. In addition, increasing the mixing rate between water and DMF using the microfluidic mixer resulted in a decrease of the diameter of the resulting polymeric micelles, as compared with the particles formed from a bulk mixing process. Overall, these findings will expand the parameter space available to control particle self-assembly while also serving to improve existing nanoparticle processing techniques.

18.
Macromol Biosci ; 17(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28683186

RESUMO

The progression of cancer is often accompanied by changes in the mechanical properties of an extracellular matrix. However, limited efforts have been made to reproduce these biological events in vitro. To this end, this study demonstrates that matrix remodeling caused by matrix metalloproteinase (MMP)-1 regulates phenotypic activities and modulates radiosensitivity of cancer cells exclusively in a 3D matrix. In this study, hepatocarcinoma cells are cultured in a collagen-based gel tailored to present an elastic modulus of ≈4.0 kPa. The subsequent exposure of the gel to MMP-1 decreases the elastic modulus from 4.0 to 0.5 kPa. In response to MMP-1, liver cancer cells undergo active proliferation, downregulation of E-cadherin, and the loss of detoxification capacity. The resulting spheroids are more sensitive to radiation than the spheroids cultured in the stiffer gel not exposed to MMP-1. Overall, this study serves to better understand and control the effects of MMP-induced matrix remodeling.


Assuntos
Carcinoma Hepatocelular/radioterapia , Matriz Extracelular/metabolismo , Neoplasias Hepáticas/radioterapia , Metaloproteinase 1 da Matriz/metabolismo , Tolerância a Radiação , Antígenos CD , Caderinas/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/fisiopatologia , Proliferação de Células , Módulo de Elasticidade , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/fisiopatologia
19.
Biomaterials ; 34(21): 5149-62, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23578555

RESUMO

The therapeutic efficiency of combined chemotherapy and gene therapy on human hepatocellular carcinoma HepG2 cells was investigated using double-walled microspheres that consisted of a poly(D,L-lactic-co-glycolic acid) (PLGA) core surrounded by a poly(L-lactic acid) (PLLA) shell layer and fabricated via the precision particle fabrication (PPF) technique. Here, double-walled microspheres were used to deliver doxorubicin (Dox) and/or chitosan-DNA nanoparticles containing the gene encoding the p53 tumor suppressor protein (chi-p53), loaded in the core and shell phases, respectively. Preliminary studies on chi-DNA nanoparticles were performed to optimize gene transfer to HepG2 cells. The transfection efficiency of chi-DNA nanoparticles was optimal at an N/P ratio of 7. In comparison to the 25-kDa branched polyethylenimine (PEI), chitosan showed no inherent toxicity towards the cells. Next, the therapeutic efficiencies of Dox and/or chi-p53 in microsphere formulations were compared to free drug(s) and evaluated in terms of growth inhibition, and cellular expression of tumor suppressor p53 and apoptotic caspase 3 proteins. Overall, the combined Dox and chi-p53 treatment exhibited enhanced cytotoxicity as compared to either Dox or chi-p53 treatments alone. Moreover, the antiproliferative effect was more substantial when cells were treated with microspheres than those treated with free drugs. High p53 expression was maintained during a five-day period, and was largely due to the controlled and sustained release of the microspheres. Moreover, increased activation of caspase 3 was observed, and was likely to have been facilitated by high levels of p53 expression. Overall, double-walled microspheres present a promising dual anticancer delivery system for combined chemotherapy and gene therapy.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Quitosana/química , Doxorrubicina/uso terapêutico , Terapia Genética , Neoplasias Hepáticas/tratamento farmacológico , Microesferas , Proteína Supressora de Tumor p53/genética , Carcinoma Hepatocelular/patologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , DNA/metabolismo , Doxorrubicina/farmacologia , Imunofluorescência , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Luciferases/metabolismo , Nanopartículas/química , Proteína Supressora de Tumor p53/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa