Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Am J Respir Crit Care Med ; 209(3): 316-324, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939220

RESUMO

Rationale: The mean pulmonary arterial wedge pressure (mPAWP) is the critical hemodynamic factor differentiating group 1 pulmonary arterial hypertension (PAH) from group 2 pulmonary hypertension associated with left heart disease. Despite the discrepancy between the mPAWP upper physiologic normal and current PAH definitions, the implications of the initial mPAWP for PAH clinical trajectory are poorly understood. Objectives: To model longitudinal mPAWP trajectories in PAH over 10 years and examine the clinical and hemodynamic factors associated with trajectory membership. Methods: Adult patients with PAH with two or more right heart catheterizations were identified from a multiinstitution healthcare system in eastern Massachusetts. mPAWP trajectories were constructed via group-based trajectory modeling. Feature selection was performed in least absolute shrinkage and selection operator regression. Logistic regression was used to assess associations between trajectory membership, baseline characteristics, and transplant-free survival. Measurements and Main Results: Among 301 patients with PAH, there were two distinct mPAWP trajectories, termed "mPAWP-high" (n = 71; 23.6%) and "mPAWP-low" (n = 230; 76.4%), based on the ultimate mPAWP value. Initial mPAWP clustered around median 12 mm Hg (interquartile range [IQR], 8-14 mm Hg) in the mPAWP-high and 9 mm Hg (IQR, 6-11 mm Hg) in the mPAWP-low trajectories (P < 0.001). After feature selection, initial mPAWP ⩾12 mm Hg predicted an mPAWP-high trajectory (odds ratio, 3.2; 95% confidence interval, 1.4-6.1; P = 0.0006). An mPAWP-high trajectory was associated with shorter transplant-free survival (vs. mPAWP-low, median, 7.8 vs. 11.3 yr; log-rank P = 0.017; age-adjusted P = 0.217). Conclusions: Over 10 years, the mPAWP followed two distinct trajectories, with 25% evolving into group 2 pulmonary hypertension physiology. Using routine baseline data, longitudinal mPAWP trajectory could be predicted accurately, with initial mPAWP ⩾12 mm Hg as one of the strongest predictors.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Adulto , Humanos , Pressão Propulsora Pulmonar/fisiologia , Estudos Retrospectivos , Hipertensão Pulmonar Primária Familiar
2.
Artigo em Inglês | MEDLINE | ID: mdl-38820122

RESUMO

RATIONALE: Quantitative interstitial abnormalities (QIA) are a computed tomography (CT) measure of early parenchymal lung disease associated with worse clinical outcomes including exercise capacity and symptoms. The presence of pulmonary vasculopathy in QIA and its role in the QIA-outcome relationship is unknown. OBJECTIVES: To quantify radiographic pulmonary vasculopathy in quantitative interstitial abnormalities (QIA) and determine if this vasculopathy mediates the QIA-outcome relationship. METHODS: Ever-smokers with QIA, outcome, and pulmonary vascular mediator data were identified from the COPDGene cohort. CT-based vascular mediators were: right ventricle-to-left ventricle ratio (RV/LV), pulmonary artery-to-aorta ratio (PA/Ao), and pre-acinar intraparenchymal arterial dilation (PA volume 5-20mm2 in cross-sectional area, normalized to total arterial volume). Outcomes were: six-minute walk distance (6MWD) and modified Medical Council Research Council (mMRC) Dyspnea score ≥2. Adjusted causal mediation analyses were used to determine if the pulmonary vasculature mediated the QIA effect on outcomes. Associations of pre-acinar arterial dilation with select plasma biomarkers of pulmonary vascular dysfunction were examined. MAIN RESULTS: Among 8,200 participants, QIA burden correlated positively with vascular damage measures including pre-acinar arterial dilation. Pre-acinar arterial dilation mediated 79.6% of the detrimental impact of QIA on 6MWD (56.2-100%, p<0.001). PA/Ao was a weak mediator and RV/LV was a suppressor. Similar results were observed in the QIA-mMRC relationship. Pre-acinar arterial dilation correlated with increased pulmonary vascular dysfunction biomarker levels including angiopoietin-2 and NT-proBNP. CONCLUSIONS: Parenchymal quantitative interstitial abnormalities (QIA) deleteriously impact outcomes primarily through pulmonary vasculopathy. Pre-acinar arterial dilation may be a novel marker of pulmonary vasculopathy in QIA.

3.
Am J Respir Crit Care Med ; 208(3): 312-321, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276608

RESUMO

Rationale: Predictors of adverse outcome in pulmonary hypertension (PH) are well established; however, data that inform survival are lacking. Objectives: We aim to identify clinical markers and therapeutic targets that inform the survival in PH. Methods: We included data from patients with elevated mean pulmonary artery pressure (mPAP) diagnosed by right heart catheterization in the U.S. Veterans Affairs system (October 1, 2006-September 30, 2018). Network medicine framework was used to subgroup patients when considering an N of 79 variables per patient. The results informed outcome analyses in the discovery cohort and a sex-balanced validation right heart catheterization cohort from Vanderbilt University (September 24, 1998-December 20, 2013). Measurements and Main Results: From an N of 4,737 complete case patients with mPAP of 19-24 mm Hg, there were 21 distinct subgroups (network modules) (all-cause mortality range = 15.9-61.2% per module). Pulmonary arterial compliance (PAC) drove patient assignment to modules characterized by increased survival. When modeled continuously in patients with mPAP ⩾19 mm Hg (N = 37,744; age, 67.2 yr [range = 61.7-73.8 yr]; 96.7% male; median follow-up time, 1,236 d [range = 570-1,971 d]), the adjusted all-cause mortality hazard ratio was <1.0 beginning at PAC ⩾3.0 ml/mm Hg and decreased progressively to ∼7 ml/mm Hg. A protective association between PAC ⩾3.0 ml/mm Hg and mortality was also observed in the validation cohort (N = 1,514; age, 60.2 yr [range = 49.2-69.1 yr]; 48.0% male; median follow-up time, 2,485 d [range = 671-3,580 d]). The association was strongest in patients with precapillary PH at the time of catheterization, in whom 41% (95% confidence interval, 0.55-0.62; P < 0.001) and 49% (95% confidence interval, 0.38-0.69; P < 0.001) improvements in survival were observed for PAC ⩾3.0 versus <3.0 ml/mm Hg in the discovery and validation cohorts, respectively. Conclusions: These data identify elevated PAC as an important parameter associated with survival in PH. Prospective studies are warranted that consider PAC ⩾3.0 ml/mm Hg as a therapeutic target to achieve through proven interventions.


Assuntos
Hipertensão Pulmonar , Artéria Pulmonar , Humanos , Masculino , Idoso , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Cateterismo Cardíaco , Modelos de Riscos Proporcionais , Hemodinâmica
4.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L617-L627, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37786941

RESUMO

Understanding metabolic evolution underlying pulmonary arterial hypertension (PAH) development may clarify pathobiology and reveal disease-specific biomarkers. Patients with systemic sclerosis (SSc) are regularly surveilled for PAH, presenting an opportunity to examine metabolic change as disease develops in an at-risk cohort. We performed mass spectrometry-based metabolomics on longitudinal serum samples collected before and near SSc-PAH diagnosis, compared with time-matched SSc subjects without PAH, in a SSc surveillance cohort. We validated metabolic differences in a second cohort and determined metabolite-phenotype relationships. In parallel, we performed serial metabolomic and hemodynamic assessments as the disease developed in a preclinical model. For differentially expressed metabolites, we investigated corresponding gene expression in human and rodent PAH lungs. Kynurenine and its ratio to tryptophan (kyn/trp) increased over the surveillance period in patients with SSc who developed PAH. Higher kyn/trp measured two years before diagnostic right heart catheterization increased the odds of SSc-PAH diagnosis (OR 1.57, 95% CI 1.05-2.36, P = 0.028). The slope of kyn/trp rise during SSc surveillance predicted PAH development and mortality. In both clinical and experimental PAH, higher kynurenine pathway metabolites correlated with adverse pulmonary vascular and RV measurements. In human and rodent PAH lungs, expression of TDO2, which encodes tryptophan 2,3 dioxygenase (TDO), a protein that catalyzes tryptophan conversion to kynurenine, was significantly upregulated and tightly correlated with pulmonary hypertensive features. Upregulated kynurenine pathway metabolism occurs early in PAH, localizes to the lung, and may be modulated by TDO2. Kynurenine pathway metabolites may be candidate PAH biomarkers and TDO warrants exploration as a potential novel therapeutic target.NEW & NOTEWORTHY Our study shows an early increase in kynurenine pathway metabolism in at-risk subjects with systemic sclerosis who develop pulmonary arterial hypertension (PAH). We show that kynurenine pathway upregulation precedes clinical diagnosis and that this metabolic shift is associated with increased disease severity and shorter survival times. We also show that gene expression of TDO2, an enzyme that generates kynurenine from tryptophan, rises with PAH development.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Escleroderma Sistêmico , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/complicações , Cinurenina , Triptofano , Escleroderma Sistêmico/complicações , Hipertensão Pulmonar Primária Familiar , Biomarcadores
17.
N Engl J Med ; 389(14): 1331-1332, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37634159
20.
FASEB J ; 34(8): 11087-11100, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32638415

RESUMO

Ectopic cardiovascular calcification is a highly prevalent pathology for which there are no effective novel or repurposed pharmacotherapeutics to prevent disease progression. We created a human calcification endophenotype module (ie, the "calcificasome") by mapping vascular calcification genes (proteins) to the human vascular smooth muscle-specific protein-protein interactome (218 nodes and 632 edges, P < 10-5 ). Network proximity analysis was used to demonstrate that the calcificasome overlapped significantly with endophenotype modules governing inflammation, thrombosis, and fibrosis in the human interactome (P < 0.001). A network-based drug repurposing analysis further revealed that everolimus, temsirolimus, and pomalidomide are predicted to target the calcificasome. The efficacy of these agents in limiting calcification was confirmed experimentally by treating human coronary artery smooth muscle cells in an in vitro calcification assay. Each of the drugs affected expression or activity of their predicted target in the network, and decreased calcification significantly (P < 0.009). An integrated network analytical approach identified novel mediators of ectopic cardiovascular calcification and biologically plausible candidate drugs that could be repurposed to target calcification. This methodological framework for drug repurposing has broad applicability to other diseases.


Assuntos
Calcinose/tratamento farmacológico , Calcinose/patologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/patologia , Preparações Farmacêuticas/administração & dosagem , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/patologia , Células Cultivadas , Fibrose/tratamento farmacológico , Fibrose/patologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Trombose/tratamento farmacológico , Trombose/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa