RESUMO
Polyethylene terephthalate (PET) recycling is one of the most important environmental issues, assuring a cleaner environment and reducing the carbon footprint of technological products, taking into account the quantities used year by year. The recycling possibilities depend on the quality of the collected material and on the targeted product. Current research aims to increase recycling quantities by putting together recycled PET in an innovative way as a filler for the additive manufactured metallic lattice structure. Starting from the structures mentioned above, a new range of composite materials was created: IPC (interpenetrating phase composites), materials with a complex architecture in which a solid phase, the reinforcement, is uniquely combined with the other phase, heated to the temperature of melting. The lattice structure was modeled by the intersection of two rings using Solid Works, which generates the lattice structure, which was further produced by an additive manufacturing technique from 316L stainless steel. The compressive strength shows low values for recycled PET, of about 26 MPa, while the stainless-steel lattice structure has about 47 MPa. Recycled PET molding into the lattice structure increases its compressive strength at 53 MPa. The Young's moduli are influenced by the recycled PET reinforcement by an increase from about 1400 MPa for the bare lattice structure to about 1750 MPa for the reinforced structure. This sustains the idea that recycled PET improves the composite elastic behavior due to its superior Young's modulus of about 1570 MPa, acting synergically with the stainless-steel lattice structure. The morphology was investigated with SEM microscopy, revealing the binding ability of recycled PET to the 316L surface, assuring a coherent composite. The failure was also investigated using SEM microscopy, revealing that the microstructural unevenness may act as a local tensor, which promotes the interfacial failure within local de-laminations that weakens the composite, which finally breaks.
RESUMO
BACKGROUND AND AIM: Bone defect reconstruction in the maxillofacial area comes as a necessity after traumatic, oncological or congenital pathology. Custom made implant manufacturing, such as selective laser melting (SLM), is very helpful when bone reconstruction is needed. In the present study we assessed the osseointegration of custom made implants made of Ti6Al7Nb with two different coatings: SiO2-TiO2 and hydroxyapatite, by comparing the bone mineral density (BMD) measured on micro-CT and the histological mineralized bone surrounding the implants. METHODS: Custom made - cylindrical type - implants were produced by selective laser melting, coated with SiO2-TiO2 and hydroxyapatite and implanted in the rabbit femur. The animals (divided into 3 groups) were sacrificed at 1, 3 and 6 months and the implants were removed together with the surrounding bone. Bone mineral density and histological examination of the bone-implant surface was performed for each group. RESULTS: BMD and histological examination of the samples determined the quantity of mineralized bone at the implant site, showing a good percentage of mineralized bone for the coated implants at 1, 3 and 6 months. The measurements for the implants without coating showed a significant lower quantity of mineralized bone at 3 months compared with the implants with coating, and a good quantity of mineralized bone at 6 months, showing a process of demineralization followed by remineralization in the last month. The measurements of BMD showed similar results with the histological examination. CONCLUSIONS: The use of micro-CT and the measurement of BMD are a reliable, minimally invasive and a quick method of osseointegration assessment.