Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 25(5): 907-17, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24821372

RESUMO

Chemokine receptors and their ligands play a central role in cancer metastasis, inflammatory disorders, and viral infections. Viologen dendrimers (VGD) emerged recently as a promising class of synthetic polycationic ligands for chemokine receptor CXCR4. The objective of this study was to evaluate the potential of VGD as novel dual-function polycations capable of simultaneous CXCR4 antagonism and gene delivery. As part of our systematic studies, we have synthesized a library of VGD with differences in molecular architecture, number of positive charges, and type of capping group. The ability of VGD to condense DNA was evaluated, and physicochemical and biological properties of the resulting polyplexes were studied. We have evaluated the effect of VGD surface charge, size, capping group, and molecular architecture on physicochemical properties of polyplexes, transfection efficiency, CXCR4 antagonism, and cytotoxicity in human epithelial osteosarcoma (U2OS) and in human liver hepatocellular carcinoma (HepG2) cells. We found that properties and behavior of the polyplexes are most dependent on the number of positive charges and molecular weight of VGD and to a lesser extent on the type of a capping group. Using TNFα plasmid, we have demonstrated that VGD prevents CXCR4-mediated cancer cell invasion and facilitates TNFα-mediated cancer cell killing. Such dual-function carriers have potential to enhance the overall therapeutic outcomes of cancer gene therapy.


Assuntos
Antineoplásicos/farmacologia , Dendrímeros/química , Dendrímeros/farmacologia , Técnicas de Transferência de Genes , Terapia Genética , Receptores CXCR4/antagonistas & inibidores , Viologênios/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dendrímeros/síntese química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Modelos Moleculares , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/uso terapêutico , Viologênios/síntese química , Viologênios/farmacologia
2.
Sci Rep ; 14(1): 3532, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347024

RESUMO

SiGeSn nanocrystals (NCs) in oxides are of considerable interest for photo-effect applications due to the fine-tuning of the optical bandgap by quantum confinement in NCs. We present a detailed study regarding the silicon germanium tin (SiGeSn) NCs embedded in a nanocrystalline hafnium oxide (HfO2) matrix fabricated by using magnetron co-sputtering deposition at room temperature and rapid thermal annealing (RTA). The NCs were formed at temperatures in the range of 500-800 °C. RTA was performed to obtain SiGeSn NCs with surfaces passivated by the embedding HfO2 matrix. The formation of NCs and ß-Sn segregation were discussed in relation to the deposition and processing conditions by employing HRTEM, XRD and Raman spectroscopy studies. The spectral photosensitivity exhibited up to 2000 nm in short-wavelength infrared (SWIR) depending on the Sn composition was obtained. Comparing to similar results on GeSn NCs in SiO2 matrix, the addition of Si offers a better thermal stability of SiGeSn NCs, while the use of HfO2 matrix results in better passivation of NCs increasing the SWIR photosensitivity at room temperature. These results suggest that SiGeSn NCs embedded in an HfO2 matrix are a promising material for SWIR optoelectronic devices.

3.
Sci Rep ; 11(1): 13582, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193909

RESUMO

We present a detailed study regarding the bandgap dependence on diameter and composition of spherical Ge-rich GexSi1-x nanocrystals (NCs). For this, we conducted a series of atomistic density functional theory (DFT) calculations on H-passivated NCs of Ge-rich GeSi random alloys, with Ge atomic concentration varied from 50 to 100% and diameters ranging from 1 to 4 nm. As a result of the dominant confinement effect in the DFT computations, a composition invariance of the line shape of the bandgap diameter dependence was found for the entire computation range, the curves being shifted for different Ge concentrations by ΔE(eV) = 0.651(1 - x). The shape of the dependence of NCs bandgap on the diameter is well described by a power function 4.58/d1.25 for 2-4 nm diameter range, while for smaller diameters, there is a tendency to limit the bandgap to a finite value. By H-passivation of the NC surface, the effect of surface states near the band edges is excluded aiming to accurately determine the NC bandgap. The number of H atoms necessary to fully passivate the spherical GexSi1-x NC surface reaches the total number atoms of the Ge + Si core for smallest NCs and still remains about 25% from total number of atoms for bigger NC diameters of 4 nm. The findings are in line with existing theoretical and experimental published data on pure Ge NCs and allow the evaluation of the GeSi NCs behavior required by desired optical sensor applications for which there is a lack of DFT simulation data in literature.

4.
Materials (Basel) ; 14(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34832440

RESUMO

Group IV nanocrystals (NCs), in particular from the Si-Ge system, are of high interest for Si photonics applications. Ge-rich SiGe NCs embedded in nanocrystallized HfO2 were obtained by magnetron sputtering deposition followed by rapid thermal annealing at 600 °C for nanostructuring. The complex characterization of morphology and crystalline structure by X-ray diffraction, µ-Raman spectroscopy, and cross-section transmission electron microscopy evidenced the formation of Ge-rich SiGe NCs (3-7 nm diameter) in a matrix of nanocrystallized HfO2. For avoiding the fast diffusion of Ge, the layer containing SiGe NCs was cladded by very thin top and bottom pure HfO2 layers. Nanocrystallized HfO2 with tetragonal/orthorhombic structure was revealed beside the monoclinic phase in both buffer HfO2 and SiGe NCs-HfO2 layers. In the top part, the film is mainly crystallized in the monoclinic phase. High efficiency of the photocurrent was obtained in a broad spectral range of curves of 600-2000 nm at low temperatures. The high-quality SiGe NC/HfO2 matrix interface together with the strain induced in SiGe NCs by nanocrystallization of both HfO2 matrix and SiGe nanoparticles explain the unexpectedly extended photoelectric sensitivity in short-wave infrared up to about 2000 nm that is more than the sensitivity limit for Ge, in spite of the increase of bandgap by well-known quantum confinement effect in SiGe NCs.

5.
ACS Appl Mater Interfaces ; 12(50): 56161-56171, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33275429

RESUMO

The development of short-wave infrared (SWIR) photonics based on GeSn alloys is of high technological interest for many application fields, such as the Internet of things or pollution monitoring. The manufacture of crystalline GeSn is a major challenge, mainly because of the low miscibility of Ge and Sn. The use of embedded GeSn nanocrystals (NCs) by magnetron sputtering is a cost-effective and efficient method to relax the growth conditions. We report on the use of GeSn/SiO2 multilayer deposition as a way to control the NC size and their insulation. The in situ prenucleation of NCs during deposition was followed by ex situ rapid thermal annealing. The nanocrystallization of 20×(11nm_Ge0.865Sn0.135/1.5nm_SiO2) multilayers leads to formation of GeSn NCs with ∼16% Sn concentration and ∼9 nm size. Formation of GeSn domes that are vertically correlated contributes to the nanocrystallization process. The absorption limit of ∼0.4 eV in SWIR found by ellipsometry is in agreement with the spectral photosensitivity. The ITO/20×(GeSn NC/SiO2)/p-Si/Al diodes show a maximum value of the SWIR photosensitivity at a reverse voltage of 0.5 V, with extended sensitivity to wavelengths longer than 2200 nm. The multilayer diodes have higher photocurrent efficiency compared to diodes based on a thick monolayer of GeSn NCs.

6.
ACS Appl Mater Interfaces ; 12(30): 33879-33886, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32633935

RESUMO

GeSn alloys have the potential of extending the Si photonics functionality in shortwave infrared (SWIR) light emission and detection. Epitaxial GeSn layers were deposited on a relaxed Ge buffer on Si(100) wafer by using high power impulse magnetron sputtering (HiPI-MS). Detailed X-ray reciprocal space mapping and HRTEM investigations indicate higher crystalline quality of GeSn epitaxial layers deposited by Ge HiPI-MS compared to commonly used radio frequency magnetron sputtering (RF-MS). To obtain a rectifying heterostructure for SWIR light detection, a layer of GeSn nanocrystals (NCs) embedded in oxide was deposited on the epitaxial GeSn one. Embedded GeSn NCs are obtained by cosputtering deposition of (Ge1-xSnx)1-y(SiO2)y layers and subsequent rapid thermal annealing at a low temperature of 400 °C. Intrinsic GeSn structural defects give p-type behavior, while the presence of oxygen leads to the n-character of the embedded GeSn NCs. Such an embedded NCs/epitaxial GeSn p-n heterostructure shows superior photoelectrical response up to 3 orders of magnitude increase in the 1.2-2.5 µm range, as compared to performances of diode based only on embedded NCs.

7.
Nanoscale Res Lett ; 6(1): 88, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21711608

RESUMO

The electrical behavior of multi-walled carbon nanotube network embedded in amorphous silicon nitride is studied by measuring the voltage and temperature dependences of the current. The microstructure of the network is investigated by cross-sectional transmission electron microscopy. The multi-walled carbon nanotube network has an uniform spatial extension in the silicon nitride matrix. The current-voltage and resistance-temperature characteristics are both linear, proving the metallic behavior of the network. The I-V curves present oscillations that are further analyzed by computing the conductance-voltage characteristics. The conductance presents minima and maxima that appear at the same voltage for both bias polarities, at both 20 and 298 K, and that are not periodic. These oscillations are interpreted as due to percolation processes. The voltage percolation thresholds are identified with the conductance minima.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa