Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 71: 168-178, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30195675

RESUMO

Particulate matter in ambient air constitutes a complex mixture of fine and ultrafine particles composed of various chemical compounds including metals, ions, and organics. A multidisciplinary approach was developed by studying physico-chemical characteristics and mechanisms involved in the toxicity of particulate atmospheric pollution. PM0.3-2.5 and PM2.5 including ultrafine particles were sampled in Dunkerque, a French industrialized seaside city. PM samples were characterized from a chemical and toxicological point of view. Physico-chemical characterization evidenced that PM2.5 comes from several sources: natural ones, such as soil resuspension and marine sea-salt emissions, as well as anthropogenic ones, such as shipping traffic, road traffic, and industrial activities. Human BEAS-2B lung cells were exposed to PM0.3-2.5, or to the Extractable Organic Matter (EOM) of PM0.3-2.5 and PM2.5. These exposures induced several mechanisms of action implied in the genotoxicity, such as oxidative DNA adducts and DNA Damage Response. The toxicity of PM-EOM was higher for the sample including the ultrafine fraction (PM2.5) containing also higher concentrations of polycyclic aromatic hydrocarbons. These results evidenced the major role of organic compounds in the toxicity of PM.


Assuntos
Poluentes Atmosféricos/toxicidade , Dano ao DNA , Testes de Mutagenicidade , Material Particulado/toxicidade , Linhagem Celular , Humanos , Pulmão
2.
Environ Res ; 137: 256-67, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25601727

RESUMO

While the evidence for the health adverse effects of air pollution Particulate Matter (PM) has been growing, there is still uncertainty as to which constituents within PM are most harmful. Hence, to contribute to fulfill this gap of knowledge, some physicochemical characteristics and toxicological endpoints (i.e. cytotoxicity, oxidative damage, cytokine secretion) of PM2.5-0.3 samples produced during two different seasons (i.e. spring/summer or autumn/winter) in three different surroundings (i.e. rural, urban, or industrial) were studied, thereby expecting to differentiate their respective adverse effects in human bronchial epithelial cells (BEAS-2B). Physicochemical characteristics were closely related to respective origins and seasons of the six PM2.5-0.3 samples, highlighting the respective contributions of industrial and heavy motor vehicle traffic sources. Space- and season-dependent differences in cytotoxicity of the six PM2.5-0.3 samples could only be supported by considering both the physicochemical properties and the variance in air PM concentrations. Whatever spaces and seasons, dose- and even time-dependent increases in oxidative damage and cytokine secretion were reported in PM2.5-0.3-exposed BEAS-2B cells. However, the relationship between the chemical composition of each of the six PM2.5-0.3 samples and their oxidative or inflammatory potentials seemed to be very complex. These results supported the role of inorganic, ionic and organic components as exogenous source of Reactive Oxygen Species and, thereafter, cytokine secretion. Nevertheless, one of the most striking observation was that some inorganic, ionic and organic chemical components were preferentially associated with early oxidative events whereas others in the later oxidative damage and/or cytokine secretion. Taken together, these results indicated that PM mass concentration alone might not be able to explain the health outcomes, because PM is chemically nonspecific, and supported growing evidence that PM-size, composition and emission source, together with sampling season, interact in a complex manner to produce PM2.5-0.3-induced human adverse health effects.


Assuntos
Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Linhagem Celular , Monitoramento Ambiental , Células Epiteliais/efeitos dos fármacos , Humanos , Análise Multivariada , Tamanho da Partícula , Análise de Componente Principal , Espécies Reativas de Oxigênio/metabolismo
3.
J Appl Toxicol ; 34(6): 703-13, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24114850

RESUMO

Airborne particulate matter (PM) toxicity is of growing interest as diesel exhaust particles have been classified as carcinogenic to humans. However, PM is a mixture of chemicals, and respective contribution of organic and inorganic fractions to PM toxicity remains unclear. Thus, we analysed the link between chemical composition of PM samples and bulky DNA adduct formation supported by CYP1A1 and 1B1 genes induction and catalytic activities. We used six native PM samples, collected in industrial, rural or urban areas, either during the summer or winter, and carried out our experiments on the human bronchial epithelial cell line BEAS-2B. Cell exposure to PM resulted in CYP1A1 and CYP1B1 genes induction. This was followed by an increase in EROD activity, leading to bulky DNA adduct formation in exposed cells. Bulky DNA adduct intensity was associated to global EROD activity, but this activity was poorly correlated with CYPs mRNA levels. However, EROD activity was correlated with both metal and polycyclic aromatic hydrocarbon (PAH) content. Finally, principal components analysis revealed three clusters for PM chemicals, and suggested synergistic effects of metals and PAHs on bulky DNA adduct levels. This study showed the ability of PM samples from various origins to generate bulky DNA adducts in BEAS-2B cells. This formation was promoted by increased expression and activity of CYPs involved in PAHs activation into reactive metabolites. However, our data highlight that bulky DNA adduct formation is only partly explained by PM content in PAHs, and suggest that inorganic compounds, such as iron, may promote bulky DNA adduct formation by supporting CYP activity.


Assuntos
Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1B1/biossíntese , Adutos de DNA/metabolismo , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Metais/toxicidade , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Estações do Ano , Linhagem Celular , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Relação Dose-Resposta a Droga , Indução Enzimática , Células Epiteliais/enzimologia , Humanos , Pulmão/enzimologia , Metais/análise , Análise Multivariada , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Análise de Componente Principal , RNA Mensageiro/biossíntese , Fatores de Tempo
4.
Chem Res Toxicol ; 25(4): 904-19, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22404339

RESUMO

Compelling evidence indicates that exposure to air pollution particulate matter (PM) affects human health. However, how PM composition interacts with PM-size to cause adverse health effects needs elucidation. In this study, we were also interested in the physicochemical characteristics and toxicological end points of PM2.5₋0.3 samples produced in rural, urban, or industrial surroundings, thereby expecting to differentiate their respective in vitro adverse health effects in human bronchial epithelial cells (BEAS-2B). Physicochemical characteristics of the three PM2.5₋0.3 samples, notably their inorganic and organic components, were closely related to their respective emission sources. Referring also to the dose/response relationships of the three PM2.5₋0.3 samples, the most toxicologically relevant exposure times (i.e., 24, 48, and 72 h) and doses (i.e., 3.75 µg PM/cm² and 15 µg PM/cm²) to use to study the underlying mechanisms of action involved in PM-induced lung toxicity were chosen. Organic chemicals adsorbed on the three PM2.5₋0.3 samples (i.e., polycyclic aromatic hydrocarbons) were able to induce the gene expression of xenobiotic-metabolizing enzymes (i.e., Cytochrome P4501A1 and 1B1, and, to a lesser extent, NADPH-quinone oxidoreductase-1). Moreover, intracellular reactive oxygen species within BEAS-2B cells exposed to the three PM2.5₋0.3 samples induced oxidative damage (i.e., 8-hydroxy-2'-deoxyguanosine formation, malondialdehyde production and/or glutathione status alteration). There were also statistically significant increases of the gene expression and/or protein secretion of inflammatory mediators (i.e., notably IL-6 and IL-8) in BEAS-2B cells after their exposure to the three PM2.5₋0.3 samples. Taken together, the present findings indicated that oxidative damage and inflammatory response preceeded cytotoxicity in air pollution PM2.5₋0.3-exposed BEAS-2B cells and supported the idea that PM-size, composition, and origin could interact in a complex manner to determine the in vitro responsiveness to PM.


Assuntos
Poluentes Atmosféricos/toxicidade , Brônquios/citologia , Células Epiteliais/efeitos dos fármacos , Material Particulado/toxicidade , Hidrocarboneto de Aril Hidroxilases/metabolismo , Brônquios/efeitos dos fármacos , Linhagem Celular , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1 , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Humanos , Indústrias , Interleucina-6/metabolismo , Interleucina-8/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , População Rural , População Urbana
5.
Exp Gerontol ; 110: 125-132, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29860068

RESUMO

BACKGROUND: Classified as carcinogenic to humans by the IARC in 2013, fine air particulate matter (PM2.5) can be inhaled and retained into the lung or reach the systemic circulation. This can cause or exacerbate numerous pathologies to which the elderly are often more sensitive. METHODS: In order to estimate the influence of age on the development of early cellular epigenetic alterations involved in carcinogenesis, peripheral blood mononuclear cells sampled from 90 patients from three age classes (25-30, 50-55 and 75-80 years old) were ex vivo exposed to urban PM2.5. RESULTS: Particles exposure led to variations in telomerase activity and telomeres length in all age groups without any influence of age. Conversely, P16INK4A gene expression increased significantly with age after exposure to PM2.5. Age could enhance MGMT gene expression after exposure to particles, by decreasing the level of promoter methylation in the oldest people. CONCLUSION: Hence, our results demonstrated several tendencies in cells modification depending on age, even if all epigenetic assays were carried out after a limited exposure time allowing only one or two cell cycles. Since lung cancer symptoms appear only at an advanced stage, our results underline the needs for further investigation on the studied biomarkers for early diagnosis of carcinogenesis to improve survival.


Assuntos
Envelhecimento , Poluição do Ar/efeitos adversos , Carcinogênese/induzido quimicamente , Epigênese Genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Poluentes Atmosféricos/análise , Inibidor p16 de Quinase Dependente de Ciclina/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Marcadores Genéticos , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Material Particulado/efeitos adversos , Regiões Promotoras Genéticas , Telomerase/metabolismo , Encurtamento do Telômero , Proteínas Supressoras de Tumor/genética
6.
Environ Pollut ; 221: 130-140, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27914859

RESUMO

Particulate Matter (PM) air pollution is one of the major concerns for environment and health. Understanding the heterogeneity and complexity of fine and ultrafine PM is a fundamental issue notably for the assessment of PM toxicological effects. The aim of this study was to evaluate mutagenicity and cytotoxicity of a multi-influenced urban site PM, with or without the ultrafine fraction. For this purpose, PM2.5-0.3 (PM with aerodynamic diameter ranging from 0.3 to 2.5 µm) and PM2.5 were collected in Dunkerque, a French coastal industrial city and were extensively characterized for their physico-chemical properties, including inorganic and organic species. In order to identify the possible sources of atmospheric pollution, specific criteria like Carbon Preference Index (CPI) and PAH characteristic ratios were investigated. Mutagenicity assays using Ames test with TA98, TA102 and YG1041 Salmonella strains with or without S9 activation were performed on native PM sample and PM organic extracts and water-soluble fractions. BEAS-2B cell viability and cell proliferation were evaluated measuring lactate dehydrogenase release and mitochondrial dehydrogenase activity after exposure to PM and their extracts. Several contributing sources were identified in PM: soil resuspension, marine emissions including sea-salt or shipping, road traffic and industrial activities, mainly related to steelmaking or petro-chemistry. Mutagenicity of PM was evidenced, especially for PM2.5, including ultrafine fraction, in relation to PAHs content and possibly nitro-aromatics compounds. PM induced cytotoxic effects at relatively high doses, while alteration of proliferation with low PM doses could be related to underlying mechanisms such as genotoxicity.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Cidades , Dano ao DNA , Monitoramento Ambiental , Indústrias , Testes de Mutagenicidade , Mutagênicos/toxicidade , Tamanho da Partícula , Material Particulado/toxicidade , Processos Fotoquímicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Silicones
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa