Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biol ; 22(9): 2984-92, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11940656

RESUMO

Hypoxia-inducible factor 1 complex (HIF-1) plays a pivotal role in oxygen homeostasis and adaptation to hypoxia. Its function is controlled by both the protein stability and the transactivation activity of its alpha subunit, HIF-1 alpha. Hydroxylation of at least two prolyl residues in the oxygen-dependent degradation domain of HIF-1 alpha regulates its interaction with the von Hippel-Lindau protein (VHL) that targets HIF-1 alpha for ubiquitination and proteasomal degradation. Several prolyl hydroxylases have been found to specifically hydroxylate HIF-1 alpha. In this report, we investigated possible roles of VHL and hydroxylases in the regulation of the transactivation activity of the C-terminal activating domain (CAD) of HIF-1 alpha. We demonstrate that regulation of the transactivation activity of HIF-1 alpha CAD also involves hydroxylase activity but does not require functional VHL. In addition, stimulation of the CAD activity by a hydroxylase inhibitor, hypoxia, and desferrioxamine was severely blocked by the adenoviral oncoprotein E1A but not by an E1A mutant defective in targeting p300/CBP. We further demonstrate that a hydroxylase inhibitor, hypoxia, and desferrioxamine promote the functional and physical interaction between HIF-1 alpha CAD and p300/CBP in vivo. Taken together, our data provide evidence that hypoxia-regulated stabilization and transcriptional stimulation of HIF-1 alpha function are regulated through partially overlapping but distinguishable pathways.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Ligases/fisiologia , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Fatores de Transcrição , Ativação Transcricional , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Proteínas E1A de Adenovirus/metabolismo , Aspartato Carbamoiltransferase/metabolismo , Western Blotting , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular , Desferroxamina/farmacologia , Di-Hidro-Orotase/metabolismo , Células HeLa , Humanos , Hidroxilação , Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Oxigenases de Função Mista/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau
2.
J Biol Chem ; 277(8): 6183-7, 2002 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11744734

RESUMO

One of the key mediators of the hypoxic response in animal cells is the hypoxia-inducible transcription factor-1 (HIF-1) complex, in which the alpha-subunit is highly susceptible to oxygen-dependent degradation. The hypoxic response is manifested in many pathophysiological processes such as tumor growth and metastasis. During hypoxia, cells shift to a primarily glycolytic metabolic mode for their energetic needs. This is also manifested in the HIF-1-dependent up-regulation of many glycolytic genes. Paradoxically, tumor cells growing under conditions of normal oxygen tension also show elevated glycolytic rates that correlate with the increased expression of glycolytic enzymes and glucose transporters (the Warburg effect). A key regulator of glycolytic flux is the relatively recently discovered fructose-2,6-bisphosphate (F-2,6-P2), an allosteric activator of 6-phosphofructo-1-kinase (PFK-1). Steady state levels of F-2,6-P2 are maintained by the bifunctional enzyme PFK-2/F2,6-Bpase, which has both kinase and phosphatase activities. Herein, we show that one isozyme, PFKFB3, is highly induced by hypoxia and the hypoxia mimics cobalt and desferrioxamine. This induction could be replicated by the use of an inhibitor of the prolyl hydroxylase enzymes responsible for the von Hippel Lindau (VHL)-dependent destabilization and tagging of HIF-1 alpha. The absolute dependence of the PFKFB3 gene on HIF-1 was confirmed by its overexpression in VHL-deficient cells and by the lack of hypoxic induction in mouse embryonic fibroblasts conditionally nullizygous for HIF-1 alpha.


Assuntos
Hipóxia Celular , Proteínas de Ligação a DNA/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas Nucleares/metabolismo , Carcinoma Hepatocelular , Cobalto/farmacologia , Desferroxamina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Hepáticas , Fatores de Transcrição/metabolismo , Transcrição Gênica , Células Tumorais Cultivadas
3.
J Biol Chem ; 278(16): 14013-9, 2003 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-12588875

RESUMO

Hypoxia-inducible factors (HIF) are a family of heterodimeric transcriptional regulators that play pivotal roles in the regulation of cellular utilization of oxygen and glucose and are essential transcriptional regulators of angiogenesis in solid tumor and ischemic disorders. The transactivation activity of HIF complexes requires the recruitment of p300/CREB-binding protein (CBP) by HIF-1 alpha and HIF-2 alpha that undergo oxygen-dependent degradation. HIF activation in tumors is caused by several factors including mitogen-activated protein kinase (MAPK) signaling. Here we investigated the molecular basis for HIF activation by MAPK. We show that MAPK is required for the transactivation activity of HIF-1 alpha. Furthermore, inhibition of MAPK disrupts the HIF-p300 interaction and suppresses the transactivation activity of p300. Overexpression of MEK1, an upstream MAPK activator, stimulates the transactivation of both p300 and HIF-1 alpha. Interestingly, the C-terminal transactivation domain of HIF-1 alpha is not a direct substrate of MAPK, and HIF-1 alpha phosphorylation is not required for HIF-CAD/p300 interaction. Taken together, our data suggest that MAPK signaling facilitates HIF activation through p300/CBP.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Western Blotting , Linhagem Celular , Relação Dose-Resposta a Droga , Ativação Enzimática , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Luciferases/metabolismo , Modelos Biológicos , Fosforilação , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Fatores de Tempo , Ativação Transcricional , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa