Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 203(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33619154

RESUMO

The two-component system BvgAS controls the virulence regulon in Bordetella pertussis BvgS is the prototype of a family of sensor histidine-kinases harboring periplasmic Venus flytrap (VFT) domains. The VFT domains are connected to the cytoplasmic kinase moiety by helical linkers separated by a Per-ARNT-Sim (PAS) domain. Antagonism between the two linkers, as one forms a coiled coil when the other is dynamic and vice versa, regulates BvgS activity. Here we solved the structure of the intervening PAS domain by X-ray crystallography. Two forms were obtained that notably differ by the connections between the PAS core domain and the flanking helical linkers. Structure-guided mutagenesis indicated that those connections participate in the regulation of BvgS activity. The PAS domain thus appears to function as a switch-facilitator module whose conformation determines the output of the system. As many BvgS homologs have similar architectures, the mechanisms unveiled here are likely to generally apply to the regulation of sensor-histidine kinases of that family.IMPORTANCEThe whooping cough agent Bordetella pertussis colonizes the human respiratory tract using virulence factors co-regulated by the sensory transduction system BvgAS. BvgS is a model for a family of sensor-kinase proteins, some of which are found in important bacterial pathogens. BvgS functions as a kinase or a phosphatase depending on external signals, which determines if B. pertussis is virulent or avirulent. Deciphering its mode of action might thus lead to new ways of fighting infections. Here we used X-ray crystallography to solve the three-dimensional structure of the domain that precedes the enzymatic moiety and identified features that regulate BvgS activity. As many sensor-kinases of the BvgS family harbor homologous domains, the mechanism unveiled here might be of general relevance.

2.
J Bacteriol ; 199(18)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28507245

RESUMO

The whooping cough agent, Bordetella pertussis, controls the expression of its large virulence regulon in a coordinated manner through the two-component system BvgAS. BvgS is a dimeric, multidomain sensor kinase. Each monomer comprises, in succession, tandem periplasmic Venus flytrap (VFT) domains, a transmembrane segment, a cytoplasmic Per-Arnt-Sim (PAS) domain, a kinase module, and additional phosphorelay domains. BvgS shifts between kinase and phosphatase modes of activity in response to chemical modulators that modify the clamshell motions of the VFT domains. We have shown previously that this regulation involves a shift between distinct states of conformation and dynamics of the two-helix coiled-coil linker preceding the enzymatic module. In this work, we determined the mechanism of signal transduction across the membrane via a first linker, which connects the VFT and PAS domains of BvgS, using extensive cysteine cross-linking analyses and other approaches. Modulator perception by the periplasmic domains appears to trigger a small, symmetrical motion of the transmembrane segments toward the periplasm, causing rearrangements of the noncanonical cytoplasmic coiled coil that follows. As a consequence, the interface of the PAS domains is modified, which affects the second linker and eventually causes the shift of enzymatic activity. The major features of this first linker are well conserved among BvgS homologs, indicating that the mechanism of signal transduction unveiled here is likely to be generally relevant for this family of sensor kinases.IMPORTANCEBordetella pertussis produces virulence factors coordinately regulated by the two-component system BvgAS. BvgS is a sensor kinase, and BvgA is a response regulator that activates gene transcription when phosphorylated by BvgS. Sensor kinases homologous to BvgS are also found in other pathogens. Our goal is to decipher the mechanisms of BvgS signaling, since these sensor kinases may represent new targets for antibacterial agents. Signal perception by the sensor domains of BvgS triggers small motions of the helical linker region underneath. The protein domain that follows this linker undergoes a large conformational change that amplifies the initial signal, causing a shift of activity from kinase to phosphatase. Because BvgS homologs harbor similar regions, these signaling mechanisms are likely to apply generally to that family of sensor kinases.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Histidina Quinase/química , Histidina Quinase/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Conformação Proteica
3.
J Biol Chem ; 290(38): 23307-19, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26203186

RESUMO

The two-component sensory transduction system BvgAS controls the virulence regulon of the whooping-cough agent Bordetella pertussis. The periplasmic moiety of the homodimeric sensor kinase BvgS is composed of four bilobed Venus flytrap (VFT) perception domains followed by α helices that extend into the cytoplasmic membrane. In the virulent phase, the default state of B. pertussis, the cytoplasmic enzymatic moiety of BvgS acts as kinase by autophosphorylating and transferring the phosphoryl group to the response regulator BvgA. Under laboratory conditions, BvgS shifts to phosphatase activity in response to modulators, notably nicotinate ions. Here we characterized the effects of nicotinate and related modulators on the BvgS periplasmic moiety by using site-directed mutagenesis and in silico and biophysical approaches. Modulators bind with low affinity to BvgS in the VFT2 cavity. Electron paramagnetic resonance shows that their binding globally affects the conformation and dynamics of the periplasmic moiety. Specific amino acid substitutions designed to slacken interactions within and between the VFT lobes prevent BvgS from responding to nicotinate, showing that BvgS shifts from kinase to phosphatase activity in response to this modulator via a tense transition state that involves a large periplasmic structural block. We propose that this transition enables the transmembrane helices to adopt a distinct conformation that sets the cytoplasmic enzymatic moiety in the phosphatase mode. The bona fide, in vivo VFT ligands that remain to be identified are likely to trigger similar effects on the transmembrane and cytoplasmic moieties. This mechanism may be relevant to the other VFT-containing sensor kinases homologous to BvgS.


Assuntos
Proteínas de Bactérias/metabolismo , Bordetella pertussis/enzimologia , Membrana Celular/enzimologia , Niacina/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Bactérias/genética , Bordetella pertussis/genética , Membrana Celular/genética , Niacina/genética , Periplasma/enzimologia , Periplasma/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
4.
Methods Mol Biol ; 2414: 341-362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34784045

RESUMO

Complement is a key component of functional immunological assays used to evaluate vaccine-mediated immunity to a range of bacterial and viral pathogens. However, standardization of these assays is complicated due to the availability of a human complement source that lacks existing antibodies acquired either through vaccination or natural circulation of the pathogen of interest. We have developed a method for depleting both IgG and IgM in 200 mL batches from pooled hirudin-derived human plasma by sequential affinity chromatography using a Protein G Sepharose column followed by POROS™ CaptureSelect™ IgM Affinity resin. The production of large IgG- and IgM-depleted batches of human plasma that retains total hemolytic and alternative pathway activities allows for improved assay standardization and comparison of immune responses in large clinical trials.


Assuntos
Proteínas do Sistema Complemento/imunologia , Cromatografia de Afinidade , Humanos , Imunoglobulina G , Imunoglobulina M
6.
Front Microbiol ; 11: 2108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983069

RESUMO

Despite high vaccination coverage, Bordetella pertussis the causative agent of whooping cough is still a health concern worldwide. A resurgence of pertussis cases has been reported, particularly in countries using acellular vaccines with waning immunity and pathogen adaptation thought to be responsible. A better understanding of protective immune responses is needed for the development of improved vaccines. In our study, B. pertussis strain B1917 variants presenting a single gene deletion were generated to analyze the role of vaccine components or candidate vaccine antigens as targets for bactericidal antibodies generated after acellular vaccination or natural infection. Our results show that acellular vaccination generates bactericidal antibodies that are only directed against pertactin. Serum bactericidal assay performed with convalescent samples show that disease induces bactericidal antibodies against Prn but against other antigen(s) as well. Four candidate vaccine antigens (CyaA, Vag8, BrkA, and TcfA) have been studied but were not targets for complement-mediated bactericidal antibodies after natural infection. We confirm that Vag8 and BrkA are involved in complement resistance and would be targeted by blocking antibodies. Our study suggests that the emergence and the widespread circulation of Prn-deficient strains is driven by acellular vaccination and the generation of bactericidal antibodies targeting Prn.

7.
mBio ; 9(1)2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487240

RESUMO

Bordetella pertussis controls the expression of its virulence regulon through the two-component system BvgAS. BvgS is a prototype for a family of multidomain sensor kinases. In BvgS, helical linkers connect periplasmic Venus flytrap (VFT) perception domains to a cytoplasmic Per-Arnt-Sim (PAS) domain and the PAS domain to the dimerization/histidine phosphotransfer (DHp) domain of the kinase. The two linkers can adopt coiled-coil structures but cannot do so simultaneously. The first linker forms a coiled coil in the kinase mode and the second in the phosphatase mode, with the other linker in both cases showing an increase in dynamic behavior. The intervening PAS domain changes its quaternary structure between the two modes. In BvgS homologues without a PAS domain, a helical "X" linker directly connects the VFT and DHp domains. Here, we used BvgS as a platform to characterize regulation in members of the PAS-less subfamily. BvgS chimeras of homologues with natural X linkers displayed various regulation phenotypes. We identified two distinct coiled-coil registers in the N- and C-terminal portions of the X linkers. Stable coil formation in the C-terminal moiety determines the phosphatase mode, similarly to BvgS; in contrast, coil formation in the N-terminal moiety along the other register leads to the kinase mode. Thus, antagonism between two registers in the VFT-DHp linker forms the basis for activity regulation in the absence of the PAS domain. The N and C moieties of the X linker play roles similar to those played by the two independent linkers in sensor kinases with a PAS domain, providing a unified mechanism of regulation for the entire family.IMPORTANCE The whooping cough agent Bordetella pertussis uses the BvgAS sensory transduction two-component system to regulate production of its virulence factors. BvgS serves as a model for a large family of multidomain bacterial sensor kinases. B. pertussis is virulent when BvgS functions as a kinase and avirulent when it switches to phosphatase activity in response to modulating signals. Understanding the molecular regulation of those proteins might lead to new antibacterial strategies. Here, we show that the linker regions between the perception and the enzymatic domains shift between distinct states of conformation in an alternating manner in response to signals and that their antagonistic changes control sensor kinase activity. These linker regions and mechanistic principles appear to be conserved among BvgS homologues, irrespective of the presence or absence of an intervening domain between the perception and the enzymatic domains. This work has thus uncovered general molecular mechanisms that regulate activity of sensor kinases in the BvgS family.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica
8.
PLoS One ; 13(10): e0204861, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30307950

RESUMO

The whooping cough agent Bordetella pertussis coordinately regulates the expression of its virulence factors with the two-component system BvgAS. In laboratory conditions, specific chemical modulators are used to trigger phenotypic modulation of B. pertussis from its default virulent Bvg+ phase to avirulent Bvg- or intermediate Bvgi phases, in which no virulence factors or only a subset of them are produced, respectively. Whether phenotypic modulation occurs in the host remains unknown. In this work, recombinant B. pertussis strains harboring BvgS variants were tested in a mouse model of infection and analyzed using transcriptomic approaches. Recombinant BP-BvgΔ65, which is in the Bvgi phase by default and can be up-modulated to the Bvg+ phase in vitro, could colonize the mouse nose but was rapidly cleared from the lungs, while Bvg+-phase strains colonized both organs for up to four weeks. These results indicated that phenotypic modulation, which might have restored the full virulence capability of BP-BvgΔ65, does not occur in mice or is temporally or spatially restricted and has no effect in those conditions. Transcriptomic analyses of this and other recombinant Bvgi and Bvg+-phase strains revealed that two distinct ranges of virulence gene expression allow colonization of the mouse nose and lungs, respectively. We also showed that a recombinant strain expressing moderately lower levels of the virulence genes than its wild type parent was as efficient at colonizing both organs. Altogether, genetic modifications of BvgS generate a range of phenotypic phases, which are useful tools to decipher host-pathogen interactions.


Assuntos
Proteínas de Bactérias/genética , Bordetella pertussis/patogenicidade , Mutação , Fatores de Transcrição/genética , Virulência , Coqueluche/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Bordetella pertussis/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Pulmão/microbiologia , Camundongos , Nariz/microbiologia , Engenharia de Proteínas , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo
9.
PLoS One ; 12(5): e0176396, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28493897

RESUMO

The whooping cough agent Bordetella pertussis controls the expression of its large virulence regulon in a coordinated manner through the two-component signal transduction system BvgAS. In addition to the genes coding for bona fide virulence factors, the Bvg regulon comprises genes of unknown function. In this work, we characterized a new Bvg-activated gene called BP2936. Homologs of BP2936 are found in other pathogenic Bordetellae and in several other species, including plant pathogens and environmental bacteria. We showed that the gene product of BP2936 is a membrane-associated methyl-transferase of free fatty acids. We thus propose to name it FmtB, for fatty acid methyl-transferase of Bordetella. The role of this protein was tested in cellular and animal models of infection, but the loss of BP2936 did not appear to affect host-pathogen interactions in those assays. The high level of conservation of BP2936 among B. pertussis isolates nevertheless argues that it probably plays a role in the life cycle of this pathogen.


Assuntos
Bordetella pertussis/genética , Metiltransferases/genética , Fatores de Virulência de Bordetella/genética , Coqueluche/genética , Proteínas de Bactérias/genética , Bordetella pertussis/enzimologia , Bordetella pertussis/patogenicidade , Ácidos Graxos não Esterificados/genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Regulon/genética , Transdução de Sinais , Coqueluche/microbiologia
10.
Nat Commun ; 5: 5271, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25327833

RESUMO

TpsB proteins are Omp85 superfamily members that mediate protein translocation across the outer membrane of Gram-negative bacteria. Omp85 transporters are composed of N-terminal POTRA domains and a C-terminal transmembrane ß-barrel. In this work, we track the in vivo secretion path of the Bordetella pertussis filamentous haemagglutinin (FHA), the substrate of the model TpsB transporter FhaC, using site-specific crosslinking. The conserved secretion domain of FHA interacts with the POTRA domains, specific extracellular loops and strands of FhaC and the inner ß-barrel surface. The interaction map indicates a funnel-like pathway, with conformationally flexible FHA entering the channel in a non-exclusive manner and exiting along a four-stranded ß-sheet at the surface of the FhaC barrel. This sheet of FhaC guides the secretion domain of FHA along discrete steps of translocation and folding. This work demonstrates that the Omp85 barrel serves as a channel for translocation of substrate proteins.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Bordetella pertussis/metabolismo , Fragmentos de Peptídeos/metabolismo , Fatores de Virulência de Bordetella/metabolismo , Reagentes de Ligações Cruzadas/química , Cisteína/química , Escherichia coli/metabolismo , Citometria de Fluxo , Regulação Bacteriana da Expressão Gênica , Hemaglutininas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese Sítio-Dirigida , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa