Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Biotheor ; 68(1): 139-156, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31312977

RESUMO

During the course of evolution, variations of a protein sequence is an ongoing phenomenon however limited by the need to maintain its structural and functional integrity. Deciphering the evolutionary path of a protein is thus of fundamental interest. With the development of new methods to visualize high dimension spaces and the improvement of phylogenetic analysis tools, it is possible to study the evolutionary trajectories of proteins in the sequence space. Using the data-driven high-dimensional scaling method, we show that it is possible to predict and represent potential evolutionary trajectories by representing phylogenetic trees into a 3D projection of the sequence space. With the case of the aminodeoxychorismate synthase, an enzyme involved in folate synthesis, we show that this representation raises interesting questions about the complexity of the evolution of a given biological function, in particular concerning its capacity to explore the sequence space.


Assuntos
Algoritmos , Arabidopsis/enzimologia , Evolução Molecular , Filogenia , Transaminases/química , Transaminases/metabolismo , Simulação por Computador
2.
PLoS Pathog ; 6(9): e1001125, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20941353

RESUMO

Although polymicrobial infections, caused by combinations of viruses, bacteria, fungi and parasites, are being recognised with increasing frequency, little is known about the occurrence of within-species diversity in bacterial infections and the molecular and evolutionary bases of this diversity. We used multiple approaches to study the genomic and phenotypic diversity among 226 Escherichia coli isolates from deep and closed visceral infections occurring in 19 patients. We observed genomic variability among isolates from the same site within 11 patients. This diversity was of two types, as patients were infected either by several distinct E. coli clones (4 patients) or by members of a single clone that exhibit micro-heterogeneity (11 patients); both types of diversity were present in 4 patients. A surprisingly wide continuum of antibiotic resistance, outer membrane permeability, growth rate, stress resistance, red dry and rough morphotype characteristics and virulence properties were present within the isolates of single clones in 8 of the 11 patients showing genomic micro-heterogeneity. Many of the observed phenotypic differences within clones affected the trade-off between self-preservation and nutritional competence (SPANC). We showed in 3 patients that this phenotypic variability was associated with distinct levels of RpoS in co-existing isolates. Genome mutational analysis and global proteomic comparisons in isolates from a patient revealed a star-like relationship of changes amongst clonally diverging isolates. A mathematical model demonstrated that multiple genotypes with distinct RpoS levels can co-exist as a result of the SPANC trade-off. In the cases involving infection by a single clone, we present several lines of evidence to suggest diversification during the infectious process rather than an infection by multiple isolates exhibiting a micro-heterogeneity. Our results suggest that bacteria are subject to trade-offs during an infectious process and that the observed diversity resembled results obtained in experimental evolution studies. Whatever the mechanisms leading to diversity, our results have strong medical implications in terms of the need for more extensive isolate testing before deciding on antibiotic therapies.


Assuntos
Antibacterianos/farmacologia , Evolução Biológica , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli/patogenicidade , Variação Genética , Virulência/genética , Adulto , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Movimento Celular , DNA Bacteriano/genética , Eletroforese em Gel Bidimensional , Escherichia coli/classificação , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/genética , Feminino , Genoma Bacteriano , Genótipo , Humanos , Peróxido de Hidrogênio/farmacologia , Immunoblotting , Camundongos , Testes de Sensibilidade Microbiana , Modelos Teóricos , Mutação/genética , Oxidantes/farmacologia , Reação em Cadeia da Polimerase , Fator sigma/genética , Fator sigma/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Virulência/genética
3.
Nucleic Acids Res ; 33(Web Server issue): W512-5, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15980524

RESUMO

GENSTYLE (http://Genstyle.imed.jussieu.fr) is a workspace designed for the characterization and classification of nucleotide sequences. Based on the genomic signature paradigm, GENSTYLE focuses on oligonucleotide frequencies in DNA sequences. Users can select sequences of interest in the GENSTYLE companion database, where the whole set of GenBank sequences is grouped per species, or upload their own sequences to work with. Tools for the exploration and analysis of signatures allow (i) identification of the origin of DNA segments (detection of rare species or species for which technical problems prevent fast characterization, such as micro-organisms with slow growth), (ii) analysis of the homogeneity of a genome and isolation of areas with novel functionality (horizontal transfers for example)--and (iii) molecular phylogeny and taxonomy.


Assuntos
Genômica/métodos , Software , Bases de Dados de Ácidos Nucleicos , Internet , Oligonucleotídeos/química , Oligonucleotídeos/classificação , Filogenia , Análise de Sequência de DNA , Interface Usuário-Computador
4.
Nucleic Acids Res ; 33(1): e6, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-15653627

RESUMO

Horizontal DNA transfer is an important factor of evolution and participates in biological diversity. Unfortunately, the location and length of horizontal transfers (HTs) are known for very few species. The usage of short oligonucleotides in a sequence (the so-called genomic signature) has been shown to be species-specific even in DNA fragments as short as 1 kb. The genomic signature is therefore proposed as a tool to detect HTs. Since DNA transfers originate from species with a signature different from those of the recipient species, the analysis of local variations of signature along recipient genome may allow for detecting exogenous DNA. The strategy consists in (i) scanning the genome with a sliding window, and calculating the corresponding local signature (ii) evaluating its deviation from the signature of the whole genome and (iii) looking for similar signatures in a database of genomic signatures. A total of 22 prokaryote genomes are analyzed in this way. It has been observed that atypical regions make up approximately 6% of each genome on the average. Most of the claimed HTs as well as new ones are detected. The origin of putative DNA transfers is looked for among approximately 12 000 species. Donor species are proposed and sometimes strongly suggested, considering similarity of signatures. Among the species studied, Bacillus subtilis, Haemophilus Influenzae and Escherichia coli are investigated by many authors and give the opportunity to perform a thorough comparison of most of the bioinformatics methods used to detect HTs.


Assuntos
Transferência Genética Horizontal , Genoma Bacteriano , Genômica/métodos , Bacillus subtilis/genética , Biologia Computacional , Escherichia coli/genética , Haemophilus influenzae/genética
5.
IEEE Trans Neural Netw ; 18(5): 1265-79, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18220179

RESUMO

Mapping high-dimensional data in a low-dimensional space, for example, for visualization, is a problem of increasingly major concern in data analysis. This paper presents data-driven high-dimensional scaling (DD-HDS), a nonlinear mapping method that follows the line of multidimensional scaling (MDS) approach, based on the preservation of distances between pairs of data. It improves the performance of existing competitors with respect to the representation of high-dimensional data, in two ways. It introduces (1) a specific weighting of distances between data taking into account the concentration of measure phenomenon and (2) a symmetric handling of short distances in the original and output spaces, avoiding false neighbor representations while still allowing some necessary tears in the original distribution. More precisely, the weighting is set according to the effective distribution of distances in the data set, with the exception of a single user-defined parameter setting the tradeoff between local neighborhood preservation and global mapping. The optimization of the stress criterion designed for the mapping is realized by "force-directed placement" (FDP). The mappings of low- and high-dimensional data sets are presented as illustrations of the features and advantages of the proposed algorithm. The weighting function specific to high-dimensional data and the symmetric handling of short distances can be easily incorporated in most distance preservation-based nonlinear dimensionality reduction methods.


Assuntos
Algoritmos , Inteligência Artificial , Gráficos por Computador , Apresentação de Dados , Imageamento Tridimensional/métodos , Armazenamento e Recuperação da Informação/métodos , Modelos Teóricos , Simulação por Computador
6.
Gene ; 336(2): 163-73, 2004 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-15246528

RESUMO

Comparative genomic analysis of the malaria causative agent, Plasmodium falciparum, with other eukaryotes for which the complete genome is available, revealed that the genome from P. falciparum was more similar to the genome of a plant, Arabidopsis thaliana, than to other non-apicomplexan taxa. Plant-like sequences are thought to result from horizontal gene transfers after a secondary endosymbiosis involving an algal ancestor. The use of the A. thaliana genome and proteome as a reference gives an opportunity to refine our understanding of the extreme compositional bias in the P. falciparum genome that leads to a proteome-wide amino acid bias. A set of pairs of non-redundant protein homologues was selected owing to rigorous genome-wide sequence comparison methods. The introduction of A. thaliana as a reference was a mean to weight the magnitude of the protein evolutionary divergence in P. falciparum. The correlation of the amino acid proportions with evolutionary time supports the hypothesis that amino acids encoded by GC-rich codons are directionally substituted into amino acids encoded by AT-rich codons in the P. falciparum proteome. The long-term deviation of codons in malarial sequences appears as a possible consequence of a genome-wide tri-nucleotidic signature imprinting. Additionally, this study suggests possible working guidelines to improve the accuracy of P. falciparum sequence comparisons, for homology searches and phylogenetic studies.


Assuntos
Arabidopsis/genética , Genoma de Planta , Genoma de Protozoário , Plasmodium falciparum/genética , Proteoma/genética , Sequência Rica em At , Algoritmos , Aminoácidos/genética , Animais , Proteínas de Arabidopsis/genética , Composição de Bases , Códon/genética , Bases de Dados Genéticas , Evolução Molecular , Sequência Rica em GC , Proteínas de Protozoários/genética , Alinhamento de Sequência
7.
Evol Bioinform Online ; 7: 257-70, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22253532

RESUMO

Color may be very useful to visualise complex data. As far as taxonomy is concerned, color may help observing various species' characteristics in correlation with classification. However, choosing the number of subclasses to display is often a complex task: on the one hand, assigning a limited number of colors to taxa of interest hides the structure imbedded in the subtrees of the taxonomy; on the other hand, differentiating a high number of taxa by giving them specific colors, without considering the underlying taxonomy, may lead to unreadable results since relationships between displayed taxa would not be supported by the color code. In the present paper, an automatic color coding scheme is proposed to visualise the levels of taxonomic relationships displayed as overlay on any kind of data plot. To achieve this goal, a dimensionality reduction method allows displaying taxonomic "distances" onto a Euclidean two-dimensional space. The resulting map is projected onto a 2D color space (the Hue, Saturation, Brightness colorimetric space with brightness set to 1). Proximity in the taxonomic classification corresponds to proximity on the map and is therefore materialised by color proximity. As a result, each species is related to a color code showing its position in the taxonomic tree. The so called ColorPhylo displays taxonomic relationships intuitively and can be combined with any biological result. A Matlab version of ColorPhylo is available at http://sy.lespi.free.fr/ColorPhylo-homepage.html. Meanwhile, an ad-hoc distance in case of taxonomy with unknown edge lengths is proposed.

8.
Evol Bioinform Online ; 7: 61-85, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21697992

RESUMO

Whatever the phylogenetic method, genetic sequences are often described as strings of characters, thus molecular sequences can be viewed as elements of a multi-dimensional space. As a consequence, studying motion in this space (ie, the evolutionary process) must deal with the amazing features of high-dimensional spaces like concentration of measured phenomenon.TO STUDY HOW THESE FEATURES MIGHT INFLUENCE PHYLOGENY RECONSTRUCTIONS, WE EXAMINED A PARTICULAR POPULAR METHOD: the Fitch-Margoliash algorithm, which belongs to the Least Squares methods. We show that the Least Squares methods are closely related to Multi Dimensional Scaling. Indeed, criteria for Fitch-Margoliash and Sammon's mapping are somewhat similar. However, the prolific research in Multi Dimensional Scaling has definitely allowed outclassing Sammon's mapping.Least Square methods for tree reconstruction can now take advantage of these improvements. However, "false neighborhood" and "tears" are the two main risks in dimensionality reduction field: "false neighborhood" corresponds to a widely separated data in the original space that are found close in representation space, and neighbor data that are displayed in remote positions constitute a "tear". To address this problem, we took advantage of the concepts of "continuity" and "trustworthiness" in the tree reconstruction field, which limit the risk of "false neighborhood" and "tears". We also point out the concentration of measured phenomenon as a source of error and introduce here new criteria to build phylogenies with improved preservation of distances and robustness.The authors and the Evolutionary Bioinformatics Journal dedicate this article to the memory of Professor W.M. Fitch (1929-2011).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa