RESUMO
Among 249 healthcare personnel who worked in hospital units with COVID-19 patients for 1 month, 19 (7.6%) tested positive for SARS-CoV-2 antibodies. Only 11 (57.9%) of the 19 personnel with positive serology reported symptoms of a prior illness, suggesting asymptomatic healthcare personnel could be an important source of SARS-CoV-2 transmission.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Atenção à Saúde , Pessoal de Saúde , Humanos , Assistência ao Paciente , Estudos Soroepidemiológicos , Tennessee/epidemiologiaRESUMO
After returning from Europe to the United States, on March 1, 2020, a symptomatic teacher received positive test results for severe acute respiratory syndrome coronavirus 2. Of the 21 students exposed to the teacher in the classroom, serologic results suggested past infection for 2. Classroom contact may result in virus transmission.
Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Doenças Transmissíveis Importadas/diagnóstico , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Adolescente , Adulto , Formação de Anticorpos , COVID-19 , Criança , Pré-Escolar , Doenças Transmissíveis Importadas/transmissão , Doenças Transmissíveis Importadas/virologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Transmissão de Doença Infecciosa , Feminino , Humanos , Masculino , Pandemias , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , SARS-CoV-2 , Professores Escolares , Instituições Acadêmicas , Estudantes , Viagem , Estados Unidos/epidemiologiaRESUMO
HIV-1 primarily infects activated CD4+ T cells and macrophages. Quiescent CD4+ T cells, however, possess cellular factors that limit HIV-1 infection at different postentry steps of the viral life cycle. Here, we show that the previously reported immune regulator monocyte chemotactic protein-induced protein 1 (MCPIP1) restricts HIV-1 production in CD4+ T cells. While the ectopic expression of MCPIP1 in cell lines abolished the production of HIV-1, silencing of MCPIP1 enhanced HIV-1 production. Subsequent analysis indicated that MCPIP1 imposes its restriction by decreasing the steady levels of viral mRNA species through its RNase domain. Remarkably, common T-cell stimuli induced the rapid degradation of MCPIP1 in both T-cell lines and quiescent human CD4+ T cells. Lastly, blocking the proteosomal degradation of MCPIP1 by MG132 abrogated HIV-1 production in phorbol 12-myristate 13-acetate/ionomycin-stimulated human CD4+ T cells isolated from healthy donors. Overall, MCPIP1 poses a potent barrier against HIV-1 infection at a posttranscriptional stage. Although the observed HIV restriction conferred by MCPIP1 does not seem to be overcome by any viral protein, it is removed during cellular stimulation. These findings provide insights into the mechanisms of cellular activation-mediated HIV-1 production in CD4+ T cells.
Assuntos
Linfócitos T CD4-Positivos/metabolismo , Infecções por HIV/prevenção & controle , Ribonucleases/metabolismo , Fatores de Transcrição/metabolismo , Northern Blotting , Células HEK293 , Humanos , Immunoblotting , Leupeptinas/farmacologia , Ativação Linfocitária/imunologia , Proteólise/efeitos dos fármacos , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) is a novel human coronavirus that was identified in 2019. SARS-CoV-2 infection results in an acute, severe respiratory disease called coronavirus disease 2019 (COVID-19). The emergence and rapid spread of SARS-CoV-2 has led to a global public health crisis, which continues to affect populations across the globe. Real time reverse transcription polymerase chain reaction (rRT-PCR) is the reference standard test for COVID-19 diagnosis. Serological tests are valuable tools for serosurveillance programs and establishing correlates of protection from disease. This study evaluated the performance of one in-house enzyme linked immunosorbent assay (ELISA) utilizing the pre-fusion stabilized ectodomain of SARS-CoV-2 spike (S), two commercially available chemiluminescence assays Ortho VITROS Immunodiagnostic Products Anti-SARS-CoV-2 Total Reagent Pack and Abbott SARS-CoV-2 IgG assay and one commercially available Surrogate Virus Neutralization Test (sVNT), GenScript USA Inc., cPass SARS-CoV-2 Neutralization Antibody Detection Kit for the detection of SARS-CoV-2 specific antibodies. Using a panel of rRT-PCR confirmed COVID-19 patients' sera and a negative control group as a reference standard, all three immunoassays demonstrated high comparable positivity rates and low discordant rates. All three immunoassays were highly sensitive with estimated sensitivities ranging from 95.4-96.6â%. ROC curve analysis indicated that all three immunoassays had high diagnostic accuracies with area under the curve (AUC) values ranging from 0.9698 to 0.9807. High positive correlation was demonstrated among the conventional microneutralization test (MNT) titers and the sVNT inhibition percent values. Our study indicates that independent evaluations are necessary to optimize the overall utility and the interpretation of the results of serological tests. Overall, we demonstrate that all serological tests evaluated in this study are suitable for the detection of SARS-CoV-2 antibodies.
RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into numerous lineages with unique spike mutations and caused multiple epidemics domestically and globally. Although COVID-19 vaccines are available, new variants with the capacity for immune evasion continue to emerge. To understand and characterize the evolution of circulating SARS-CoV-2 variants in the U.S., the Centers for Disease Control and Prevention (CDC) initiated the National SARS-CoV-2 Strain Surveillance (NS3) program and has received thousands of SARS-CoV-2 clinical specimens from across the nation as part of a genotype to phenotype characterization process. Focus reduction neutralization with various antisera was used to antigenically characterize 143 SARS-CoV-2 Delta, Mu and Omicron subvariants from selected clinical specimens received between May 2021 and February 2023, representing a total of 59 unique spike protein sequences. BA.4/5 subvariants BU.1, BQ.1.1, CR.1.1, CQ.2 and BA.4/5 + D420N + K444T; BA.2.75 subvariants BM.4.1.1, BA.2.75.2, CV.1; and recombinant Omicron variants XBF, XBB.1, XBB.1.5 showed the greatest escape from neutralizing antibodies when analyzed against post third-dose original monovalent vaccinee sera. Post fourth-dose bivalent vaccinee sera provided better protection against those subvariants, but substantial reductions in neutralization titers were still observed, especially among BA.4/5 subvariants with both an N-terminal domain (NTD) deletion and receptor binding domain (RBD) substitutions K444M + N460K and recombinant Omicron variants. This analysis demonstrated a framework for long-term systematic genotype to antigenic characterization of circulating and emerging SARS-CoV-2 variants in the U.S., which is critical to assessing their potential impact on the effectiveness of current vaccines and antigen recommendations for future updates.
RESUMO
OBJECTIVE: To characterize and compare severe acute respiratory coronavirus virus 2 (SARS-CoV-2)-specific immune responses in plasma and gingival crevicular fluid (GCF) from nursing home residents during and after natural infection. DESIGN: Prospective cohort. SETTING: Nursing home. PARTICIPANTS: SARS-CoV-2-infected nursing home residents. METHODS: A convenience sample of 14 SARS-CoV-2-infected nursing home residents, enrolled 4-13 days after real-time reverse transcription polymerase chain reaction diagnosis, were followed for 42 days. After diagnosis, plasma SARS-CoV-2-specific pan-Immunoglobulin (Ig), IgG, IgA, IgM, and neutralizing antibodies were measured at 5 time points, and GCF SARS-CoV-2-specific IgG and IgA were measured at 4 time points. RESULTS: All participants demonstrated immune responses to SARS-CoV-2 infection. Among 12 phlebotomized participants, plasma was positive for pan-Ig and IgG in all 12 participants. Neutralizing antibodies were positive in 11 participants; IgM was positive in 10 participants, and IgA was positive in 9 participants. Among 14 participants with GCF specimens, GCF was positive for IgG in 13 participants and for IgA in 12 participants. Immunoglobulin responses in plasma and GCF had similar kinetics; median times to peak antibody response were similar across specimen types (4 weeks for IgG; 3 weeks for IgA). Participants with pan-Ig, IgG, and IgA detected in plasma and GCF IgG remained positive throughout this evaluation, 46-55 days after diagnosis. All participants were viral-culture negative by the first detection of antibodies. CONCLUSIONS: Nursing home residents had detectable SARS-CoV-2 antibodies in plasma and GCF after infection. Kinetics of antibodies detected in GCF mirrored those from plasma. Noninvasive GCF may be useful for detecting and monitoring immunologic responses in populations unable or unwilling to be phlebotomized.
Assuntos
COVID-19 , Pneumonia , Humanos , SARS-CoV-2 , Formação de Anticorpos , Líquido do Sulco Gengival/química , Imunoglobulina M , Anticorpos Antivirais , Arkansas , Estudos Prospectivos , COVID-19/diagnóstico , Imunoglobulina A/análise , Imunoglobulina G , Anticorpos Neutralizantes , Casas de SaúdeRESUMO
OBJECTIVE: To compare the effectiveness of a primary covid-19 vaccine series plus booster doses with a primary series alone for the prevention of hospital admission with omicron related covid-19 in the United States. DESIGN: Multicenter observational case-control study with a test negative design. SETTING: Hospitals in 18 US states. PARTICIPANTS: 4760 adults admitted to one of 21 hospitals with acute respiratory symptoms between 26 December 2021 and 30 June 2022, a period when the omicron variant was dominant. Participants included 2385 (50.1%) patients with laboratory confirmed covid-19 (cases) and 2375 (49.9%) patients who tested negative for SARS-CoV-2 (controls). MAIN OUTCOME MEASURES: The main outcome was vaccine effectiveness against hospital admission with covid-19 for a primary series plus booster doses and a primary series alone by comparing the odds of being vaccinated with each of these regimens versus being unvaccinated among cases versus controls. Vaccine effectiveness analyses were stratified by immunosuppression status (immunocompetent, immunocompromised). The primary analysis evaluated all covid-19 vaccine types combined, and secondary analyses evaluated specific vaccine products. RESULTS: Overall, median age of participants was 64 years (interquartile range 52-75 years), 994 (20.8%) were immunocompromised, 85 (1.8%) were vaccinated with a primary series plus two boosters, 1367 (28.7%) with a primary series plus one booster, and 1875 (39.3%) with a primary series alone, and 1433 (30.1%) were unvaccinated. Among immunocompetent participants, vaccine effectiveness for prevention of hospital admission with omicron related covid-19 for a primary series plus two boosters was 63% (95% confidence interval 37% to 78%), a primary series plus one booster was 65% (58% to 71%), and for a primary series alone was 37% (25% to 47%) (P<0.001 for the pooled boosted regimens compared with a primary series alone). Vaccine effectiveness was higher for a boosted regimen than for a primary series alone for both mRNA vaccines (BNT162b2 (Pfizer-BioNTech): 73% (44% to 87%) for primary series plus two boosters, 64% (55% to 72%) for primary series plus one booster, and 36% (21% to 48%) for primary series alone (P<0.001); mRNA-1273 (Moderna): 68% (17% to 88%) for primary series plus two boosters, 65% (55% to 73%) for primary series plus one booster, and 41% (25% to 54%) for primary series alone (P=0.001)). Among immunocompromised patients, vaccine effectiveness for a primary series plus one booster was 69% (31% to 86%) and for a primary series alone was 49% (30% to 63%) (P=0.04). CONCLUSION: During the first six months of 2022 in the US, booster doses of a covid-19 vaccine provided additional benefit beyond a primary vaccine series alone for preventing hospital admissions with omicron related covid-19. READERS' NOTE: This article is a living test negative design study that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Idoso , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos de Casos e Controles , Hospitais , Humanos , Pessoa de Meia-Idade , SARS-CoV-2 , Estados Unidos/epidemiologia , Eficácia de VacinasRESUMO
The rapid worldwide spread of SARS-CoV-2 has accelerated research and development for controlling the COVID-19 pandemic. A multi-coronavirus protein microarray was created containing full-length proteins, overlapping protein fragments of various lengths, and peptide libraries from SARS-CoV-2 and four other human coronaviruses. Sera from confirmed COVID-19 patients as well as unexposed individuals were applied to multicoronavirus arrays to identify specific antibody reactivity. High-level IgG, IgM, and IgA reactivity to structural proteins S, M, and N of SARS-CoV-2, as well as accessory proteins such as ORF3a and ORF7a, were observed that were specific to COVID-19 patients. Antibody reactivity against overlapping 100-, 50-, and 30-amino acid fragments of SARS-CoV-2 proteins was used to identify antigenic regions. Numerous proteins of SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), and the endemic human coronaviruses HCoV-NL63 and HCoV-OC43 were also more reactive with IgG, IgM, and IgA in COVID-19 patient sera than in unexposed control sera, providing further evidence of immunologic cross-reactivity between these viruses. Whereas unexposed individuals had minimal reactivity against SARS-CoV-2 proteins that poorly correlated with reactivity against HCoV-NL63 and HCoV-OC43 S2 and N proteins, COVID-19 patient sera had higher correlation between SARS-CoV-2 and HCoV responses, suggesting that de novo antibodies against SARS-CoV-2 cross-react with HCoV epitopes. Array responses were compared with validated spike protein-specific IgG enzyme-linked immunosorbent assays (ELISAs), showing agreement between orthologous methods. SARS-CoV-2 microneutralization titers were low in the COVID-19 patient sera but correlated with array responses against S and N proteins. The multi-coronavirus protein microarray is a useful tool for mapping antibody reactivity in COVID-19 patients. IMPORTANCE With novel mutant SARS-CoV-2 variants of concern on the rise, knowledge of immune specificities against SARS-CoV-2 proteins is increasingly important for understanding the impact of structural changes in antibody-reactive protein epitopes on naturally acquired and vaccine-induced immunity, as well as broader topics of cross-reactivity and viral evolution. A multi-coronavirus protein microarray used to map the binding of COVID-19 patient antibodies to SARS-CoV-2 proteins and protein fragments as well as to the proteins of four other coronaviruses that infect humans has shown specific regions of SARS-CoV-2 proteins that are highly reactive with patient antibodies and revealed cross-reactivity of these antibodies with other human coronaviruses. These data and the multi-coronavirus protein microarray tool will help guide further studies of the antibody response to COVID-19 and to vaccination against this worldwide pandemic.
Assuntos
Anticorpos Antivirais/imunologia , Coronavirus Humano NL63/imunologia , Coronavirus Humano OC43/imunologia , Epitopos/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/sangue , Sítios de Ligação de Anticorpos/imunologia , COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Fosfoproteínas/imunologia , Análise Serial de Proteínas , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas Virais/imunologia , Proteínas Viroporinas/imunologiaRESUMO
OBJECTIVES: Widespread global transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), continues. Many questions remain about asymptomatic or atypical infections and transmission dynamics. We used comprehensive contact tracing of the first 2 confirmed patients in Illinois with COVID-19 and serologic SARS-CoV-2 antibody testing to determine whether contacts had evidence of undetected COVID-19. METHODS: Contacts were eligible for serologic follow-up if previously tested for COVID-19 during an initial investigation or had greater-risk exposures. Contacts completed a standardized questionnaire during the initial investigation. We classified exposure risk as high, medium, or low based on interactions with 2 index patients and use of personal protective equipment (PPE). Serologic testing used a SARS-CoV-2 spike enzyme-linked immunosorbent assay on serum specimens collected from participants approximately 6 weeks after initial exposure to either index patient. The 2 index patients provided serum specimens throughout their illness. We collected data on demographic, exposure, and epidemiologic characteristics. RESULTS: Of 347 contacts, 110 were eligible for serologic follow-up; 59 (17% of all contacts) enrolled. Of these, 53 (90%) were health care personnel and 6 (10%) were community contacts. Seventeen (29%) reported high-risk exposures, 15 (25%) medium-risk, and 27 (46%) low-risk. No participant had evidence of SARS-CoV-2 antibodies. The 2 index patients had antibodies detected at dilutions >1:6400 within 4 weeks after symptom onset. CONCLUSIONS: In serologic follow-up of the first 2 known patients in Illinois with COVID-19, we found no secondary transmission among tested contacts. Lack of seroconversion among these contacts adds to our understanding of conditions (ie, use of PPE) under which SARS-CoV-2 infections might not result in transmission and demonstrates that SARS-CoV-2 antibody testing is a useful tool to verify epidemiologic findings.
Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Busca de Comunicante/estatística & dados numéricos , Pessoal de Saúde/estatística & dados numéricos , Exposição Ocupacional/estatística & dados numéricos , COVID-19/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Illinois/epidemiologia , Masculino , Pandemias , Equipamento de Proteção Individual , Medição de Risco , SARS-CoV-2RESUMO
Toll-like receptors (TLRs) are fundamental sensor molecules of the host innate immune system, which detect conserved molecular signatures of a wide range of microbial pathogens and initiate innate immune responses via distinct signaling pathways. Various TLRs are implicated in the early interplay of host cells with invading viruses, which regulates viral replication and/or host responses, ultimately impacting on viral pathogenesis. To survive the host innate defense mechanisms, many viruses have developed strategies to evade or counteract signaling through the TLR pathways, creating an advantageous environment for their propagation. Here we review the current knowledge of the roles TLRs play in antiviral innate immune responses, discuss examples of TLR-mediated viral recognition, and describe strategies used by viruses to antagonize the host antiviral innate immune responses.