RESUMO
Congenital heart defects (CHDs) are the most common birth defect with 30%-40% being explained by genetic aberrations. With next generation sequencing becoming widely available, we sought to evaluate the clinical utility of exome sequencing (ES) in prenatally diagnosed CHD. We retrospectively analyzed the diagnostic yield as well as non-conclusive and incidental findings in 30 cases with prenatally diagnosed CHDs using ES, mostly as parent-child trios. A genetic diagnosis was established in 20% (6/30). Non-conclusive results were found in 13% (4/30) and incidental findings in 10% (3/30). There was a phenotypic discrepancy between reported prenatal and postnatal extracardiac findings in 40% (8/20). However, none of these additional, postnatal findings altered the genetic diagnosis. Herein, ES in prenatally diagnosed CHDs results in a comparably high diagnostic yield. There was a significant proportion of incidental findings and variants of unknown significance as well as potentially pathogenic variants in novel disease genes. Such findings can bedevil genetic counseling and decision making for pregnancy termination. Despite the small cohort size, our data serve as a first basis to evaluate the value of prenatal ES in CHD for further studies emerging in the near future.
Assuntos
Sequenciamento do Exoma , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Diagnóstico Pré-Natal , Feminino , Humanos , Achados Incidentais , Fenótipo , Gravidez , Resultado da GravidezRESUMO
CYFIP2, encoding the evolutionary highly conserved cytoplasmic FMRP interacting protein 2, has previously been proposed as a candidate gene for intellectual disability and autism because of its important role linking FMRP-dependent transcription regulation and actin polymerization via the WAVE regulatory complex (WRC). Recently, de novo variants affecting the amino acid p.Arg87 of CYFIP2 were reported in four individuals with epileptic encephalopathy. We here report 12 independent patients harboring a variety of de novo variants in CYFIP2 broadening the molecular and clinical spectrum of a novel CYFIP2-related neurodevelopmental disorder. Using trio whole-exome or -genome sequencing, we identified 12 independent patients carrying a total of eight distinct de novo variants in CYFIP2 with a shared phenotype of intellectual disability, seizures, and muscular hypotonia. We detected seven different missense variants, of which two occurred recurrently (p.(Arg87Cys) and p.(Ile664Met)), and a splice donor variant in the last intron for which we showed exon skipping in the transcript. The latter is expected to escape nonsense-mediated mRNA decay resulting in a truncated protein. Despite the large spacing in the primary structure, the variants spatially cluster in the tertiary structure and are all predicted to weaken the interaction with WAVE1 or NCKAP1 of the actin polymerization regulating WRC-complex. Preliminary genotype-phenotype correlation indicates a profound phenotype in p.Arg87 substitutions and a more variable phenotype in other alterations. This study evidenced a variety of de novo variants in CYFIP2 as a novel cause of mostly severe intellectual disability with seizures and muscular hypotonia.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Citoplasma/metabolismo , Deficiência Intelectual/genética , Mutação/genética , Convulsões/genética , Criança , Pré-Escolar , Fácies , Feminino , Humanos , Lactente , Masculino , Modelos MolecularesRESUMO
Extracellular nucleic acids are present in plasma, serum, and other body fluids and their analysis has gained increasing attention during recent years. Because of the small quantity and highly fragmented nature of cell-free DNA in plasma and serum, a fast, efficient, and reliable isolation method is still a problem and so far there is no agreement on a standardized method. We used spin columns from commercial suppliers (QIAamp DNA Blood Midi Kit from Qiagen; NucleoSpin Kit from Macherey-Nagel; MagNA Pure isolation system from Roche Diagnostics) to isolate DNA from 44 plasma samples in parallel at laboratories in Berlin and Munich. DNA in all samples was quantified by real-time PCR on a LightCycler 480 using three different targets (GAPDH, ß-globin, ERV). The quantities of cell-free DNA for the different isolation methods and genes varied between medians of 1.6 ng/mL and 28.1 ng/mL. This considerable variation of absolute DNA values was mainly caused by the use of different isolation methods (p<0.0001). Comparable results were achieved by the use of the genes GAPDH and ERV while higher values were obtained by use of ß-globin. The laboratory site had only minor influence on DNA yield when manual extraction methods were used.