Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Oecologia ; 189(2): 365-373, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30659382

RESUMO

Hydrogen (H) isotopes of plant organic compounds are rarely employed in ecological studies. If so, these values are interpreted as being indicative of the plant source and/or leaf water. Recent observations suggest, however, that variations in hydrogen isotope fractionation that occur during the biosynthesis of plant compounds (2H-εbio) imprint valuable metabolic information into the hydrogen isotope composition (δ2H values) of plant organic compounds. Here we show a consistent 2H-enrichment of compounds in heterotrophically growing plants across a series of autotrophic/heterotrophic plant pairs. We suggest that this is due to a higher recycling of compounds in the Calvin and tricarboxylic acid cycles in heterotrophic plants that is associated with a more complete exchange of C-bound H with the surrounding 2H-enriched foliar water. Interestingly, we found that 2H-enrichment in heterotrophic plants was larger for carbohydrates than for lipids, with an average 2H-enrichment of 76 ± 9‰ in α-cellulose and 23 ± 23‰ in n-alkanes. We propose that this systematically larger 2H-enrichment for carbohydrates than for lipids is either due to different level of 2H-fractionation associated with heterotrophically produced NADPH, or to the potential uptake of lipids by heterotrophic plants. With the work we present here, we contribute to a better mechanistic understanding of what the biochemical principles are that couple the carbohydrate dynamics of plants to their δ2H values and hope to foster as such the application of H isotopes in plant sciences.


Assuntos
Alcanos , Celulose , Hidrogênio , Folhas de Planta , Plantas
3.
Anal Chem ; 87(1): 376-80, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25495958

RESUMO

A technological development is described through which the stable carbon-, oxygen-, and nonexchangeable hydrogen-isotopic ratios (δ(13)C, δ(18)O, δ(2)H) are determined on a single carbohydrate (cellulose) sample with precision equivalent to conventional techniques (δ(13)C 0.15‰, δ(18)O 0.30‰, δ(2)H 3.0‰). This triple-isotope approach offers significant new research opportunities, most notably in physiology and medicine, isotope biogeochemistry, forensic science, and palaeoclimatology, when isotopic analysis of a common sample is desirable or when sample material is limited.


Assuntos
Isótopos de Carbono/análise , Celulose/química , Hidrogênio/análise , Espectrometria de Massas/métodos , Isótopos de Oxigênio/análise
4.
Sci Total Environ ; 813: 152281, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34942249

RESUMO

This is the first Europe-wide comprehensive assessment of the climatological and physiological information recorded by hydrogen isotope ratios in tree-ring cellulose (δ2Hc) based on a unique collection of annually resolved 100-year tree-ring records of two genera (Pinus and Quercus) from 17 sites (36°N to 68°N). We observed that the high-frequency climate signals in the δ2Hc chronologies were weaker than those recorded in carbon (δ13Cc) and oxygen isotope signals (δ18Oc) but similar to the tree-ring width ones (TRW). The δ2Hc climate signal strength varied across the continent and was stronger and more consistent for Pinus than for Quercus. For both genera, years with extremely dry summer conditions caused a significant 2H-enrichment in tree-ring cellulose. The δ2Hc inter-annual variability was strongly site-specific, as a result of the imprinting of climate and hydrology, but also physiological mechanisms and tree growth. To differentiate between environmental and physiological signals in δ2Hc, we investigated its relationships with δ18Oc and TRW. We found significant negative relationships between δ2Hc and TRW (7 sites), and positive ones between δ2Hc and δ18Oc (10 sites). The strength of these relationships was nonlinearly related to temperature and precipitation. Mechanistic δ2Hc models performed well for both genera at continental scale simulating average values, but they failed on capturing year-to-year δ2Hc variations. Our results suggest that the information recorded by δ2Hc is significantly different from that of δ18Oc, and has a stronger physiological component independent from climate, possibly related to the use of carbohydrate reserves for growth. Advancements in the understanding of 2H-fractionations and their relationships with climate, physiology, and species-specific traits are needed to improve the modelling and interpretation accuracy of δ2Hc. Such advancements could lead to new insights into trees' carbon allocation mechanisms, and responses to abiotic and biotic stress conditions.


Assuntos
Celulose , Árvores , Isótopos de Carbono/análise , Florestas , Hidrogênio , Isótopos de Oxigênio/análise
5.
Nature ; 431(7005): 147-51, 2004 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-15356621

RESUMO

Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5 degrees C warmer than today. We find unexpectedly large temperature differences between our new record from northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the last glacial period) was not operating at this time.

6.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190513, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32892733

RESUMO

During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here, we show that the usual summer minimum in CO2 due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in Northern Europe. Notwithstanding, the CO2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration inherited from the previous months due to the drought. For stations with sufficiently long time series, the CO2 anomaly observed in 2018 was compared to previous European droughts in 2003 and 2015. Considering the areas most affected by the temperature anomalies, we found a higher CO2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Assuntos
Atmosfera/análise , Ciclo do Carbono , Dióxido de Carbono/análise , Secas , Ecossistema , Europa (Continente)
7.
Eur J Clin Nutr ; 62(6): 687-94, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17700652

RESUMO

The refeeding syndrome is a potentially lethal complication of refeeding in patients who are severely malnourished from whatever cause. Too rapid refeeding, particularly with carbohydrate may precipitate a number of metabolic and pathophysiological complications, which may adversely affect the cardiac, respiratory, haematological, hepatic and neuromuscular systems leading to clinical complications and even death. We aimed to review the development of the refeeding syndrome in a variety of situations and, from this and the literature, devise guidelines to prevent and treat the condition. We report seven cases illustrating different aspects of the refeeding syndrome and the measures used to treat it. The specific complications encountered, their physiological mechanisms, identification of patients at risk, and prevention and treatment are discussed. Each case developed one or more of the features of the refeeding syndrome including deficiencies and low plasma levels of potassium, phosphate, magnesium and thiamine combined with salt and water retention. These responded to specific interventions. In most cases, these abnormalities could have been anticipated and prevented. The main features of the refeeding syndrome are described with a protocol to anticipate, prevent and treat the condition in adults.


Assuntos
Desnutrição/complicações , Desnutrição/terapia , Apoio Nutricional/efeitos adversos , Equilíbrio Hidroeletrolítico/fisiologia , Jejum , Humanos , Doenças Metabólicas/etiologia , Doenças Metabólicas/fisiopatologia , Doenças Metabólicas/terapia , Fatores de Risco , Inanição , Síndrome , Desequilíbrio Hidroeletrolítico/etiologia , Desequilíbrio Hidroeletrolítico/prevenção & controle
8.
J Appl Physiol (1985) ; 81(5): 1946-51, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8941514

RESUMO

Twenty healthy high-altitude natives, residents of La Paz, Bolivia (3,600 m), participated in 6 wk of endurance exercise training on bicycle ergometers, 5 times/wk, 30 min/session, as previously described in normoxia-trained sea-level natives (H. Hoppeler, H. Howald, K. E. Conley, S. L. Lindstedt, H. Claassen, P. Vock, and E. R. Weibel. J. Appl. Physiol. 59: 320-327, 1985). A first group of 10 subjects was trained in chronic hypoxia (HT; barometric pressure = 500 mmHg; inspired O2 fraction = 0.209); a second group of 10 subjects was trained in acute normoxia (NT; barometric pressure = 500 mmHg; inspired O2 fraction = 0.314). The workloads were adjusted to approximately 70% of peak O2 consumption (VO2peak) measured either in hypoxia for the HT group or in normoxia for the NT group. VO2peak determination and biopsies of the vastus lateralis muscle were taken before and after the training program. VO2peak in the HT group was increased (14%) in a way similar to that in NT sea-level natives with the same protocol. Moreover, VO2peak in the NT group was not further increased by additional O2 delivery during the training session. HT or NT induced similar increases in muscle capillary-to-fiber ratio (26%) and capillary density (19%) as well as in the volume density of total mitochondria and citrate synthase activity (45%). It is concluded that high-altitude natives have a reduced capillarity and muscle tissue oxidative capacity; however, their training response is similar to that of sea-level residents, independent of whether training is carried out in hypobaric hypoxia or hypobaric normoxia.


Assuntos
Aclimatação/fisiologia , Altitude , Hipóxia/fisiopatologia , Músculo Esquelético/fisiologia , Aptidão Física , Adulto , Capilares/fisiologia , Capilares/ultraestrutura , Doença Crônica , Histocitoquímica , Humanos , Masculino , Microscopia Eletrônica , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Consumo de Oxigênio/fisiologia , Resistência Física
9.
J Appl Physiol (1985) ; 80(2): 632-7, 1996 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8929608

RESUMO

In sea-level natives, exposure to hypoxia for a few weeks is characterized by an increased dependence on blood glucose and a decreased reliance on lactate for energy metabolism during exercise. These metabolic adjustments have been attributed to behavioral changes in the sympathoadrenergic and pancreatic systems. The aim of this study was to test the hypothesis of a reduced sympathoadrenergic activation and subsequent metabolic changes when high-altitude natives are acutely exposed to normoxia. Young Andean natives performed incremental exercise to exhaustion during hypoxia (arterial PO2 55.1 +/- 1.1 Torr) or during acute normoxia (arterial PO2 78.7 +/- 1.7 Torr). As a whole, oxygen uptake was increased in normoxia compared with hypoxia during graded exercise. This finding is not related to a decrease in anaerobic metabolism but rather is interpreted as a consequence of a shift in substrate utilization during exercise (increased contribution of fat as assessed by a reduction in the respiratory exchange ratio). These metabolic changes are not accompanied by modifications of glucoregulatory hormones (catecholamines, insulin, and glucagon). In particular, the exercise-induced catecholamine secretion was similar in chronic hypoxia and acute normoxia. As a consequence, blood lactate accumulation during incremental exercise was similar in both conditions. It is concluded that high-altitude natives do not display any sign of a greater sympathoadrenergic activation during chronic hypoxia and that the exercise-induced hormonal changes remained unaffected by acute inhalation of a normoxic gas mixture.


Assuntos
Altitude , Exercício Físico/fisiologia , Hormônios/sangue , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Adulto , Gasometria , Glicemia/metabolismo , Sistema Cromafim/metabolismo , Sistema Cromafim/fisiologia , Teste de Esforço , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Hormônios Pancreáticos/sangue , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiologia
10.
J Appl Physiol (1985) ; 78(6): 2286-93, 1995 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-7665431

RESUMO

To determine the interactions between endurance training and hypoxia on maximal exercise performance, we performed a study on sedentary high-altitude natives who were trained in normoxia at the same relative (n = 10) or at the same absolute (n = 10) intensity of work as hypoxia-trained subjects (n = 10). The training-induced improvement of maximal oxygen uptake (VO2max) in hypoxia-trained subjects was similar to that obtained in normoxia-trained sea-level natives submitted to the same training protocol (H. Hoppeler, H. Howald, K. Conley, S. L. Lindstedt, H. Claassen, P. Vock, and E. W. Weibel. J. Appl. Physiol. 59: 320-327, 1985). Training at the same absolute work intensity in the presence of increased oxygen delivery failed to provide a further increase in VO2max. VO2max was not improved to a greater extent by simultaneously increasing absolute work intensity and O2 delivery during the training sessions. In addition, training in normoxia is accompanied by an increased blood lactate accumulation during maximal exercise, leading to greater drops in arterial pH, bicarbonate concentration, and base excess. We conclude that, in high-altitude natives, 1) training at altitude does not provide any advantage over training at sea level for maximal aerobic capacity, whether assessed in chronic hypoxia or in acute normoxia; 2) VO2max improvement with training cannot be further enhanced by increasing O2 availability alone or in combination with an increased work intensity during the exercising sessions; and 3) training in normoxia in these subjects results in a reduced buffer capacity.


Assuntos
Altitude , Exercício Físico/fisiologia , Hipóxia/metabolismo , Adulto , Bicarbonatos/metabolismo , Frequência Cardíaca , Hemodinâmica , Humanos , Lactatos/sangue , Ácido Láctico , Masculino , Oxigênio/metabolismo , Respiração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa