Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Stem Cells ; 37(11): 1416-1428, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31400234

RESUMO

Induction of ß-cell regeneration from endogenous cells represents a highly promising strategy in stem cell-based treatment for patients with diabetes. Recently, calorie restriction has been shown to affect the regulation of tissue and cell regeneration, including ß cells, via metabolic related mechanisms. Here, we examined the potential utility of sirtuin 1 (SIRT1), a calorie restriction mimetic, for stimulating ß-cell regeneration and the underlying mechanisms of such stimulation. The present results showed that SIRT1 activation with SRT1720 promoted ß-cell regeneration in streptozotocin (STZ)-induced ß-cell-deficient neonatal rats. This beneficial effect involved enhanced activation of neurogenin3 (NGN3)-positive endocrine progenitors from pancreatic ductal cells, rather than an expansion of residual ß cells. A dynamic expression profile of SIRT1 was observed in endocrine progenitors both during ß-cell regeneration in neonatal rats and in the second transition phase of mouse pancreas development. Consistently, SRT1720 treatment upregulated endocrine progenitor differentiation in cultured pancreatic rudiments. Upregulation of NGN3 by SIRT1 activation was through stimulating AMP-activated protein kinase (AMPK) signaling-mediated fatty acid oxidation (FAO) in human pancreatic progenitor cells; AMPK inhibition abolished these effects. The present findings demonstrate a promotional effect of SIRT1 activation on ß-cell restoration and endocrine progenitor differentiation that involves regulation of AMPK signaling-mediated FAO. Stem Cells 2019;37:1416-1428.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ácidos Graxos/metabolismo , Sirtuína 1/metabolismo , Células-Tronco/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Glicemia/metabolismo , Western Blotting , Células Cultivadas , Feminino , Humanos , Hiperglicemia/induzido quimicamente , Insulina/sangue , Células Secretoras de Insulina/metabolismo , Lentivirus/genética , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Oxirredução , Pâncreas/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sirtuína 1/genética , Estreptozocina/toxicidade
2.
Clin Sci (Lond) ; 133(19): 2029-2044, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31654570

RESUMO

Fibroblast growth factor 21 (FGF21) is known as a potent metabolic regulator but its protective mechanisms against lipotoxicity-induced ß-cell dysfunction and apoptosis remain elusive. Here, we aimed to examine the regulatory pathways whereby FGF21 mediates islet lipid metabolism in lipotoxicity-treated cells and animal models. Rat ß-cell line (INS-1E cells) and islets isolated from C57/BL6J mice were exposed to palmitic acid (PA) with/without FGF21, mimicking lipotoxic conditions. Resultant insulin secretion and intracellular signaling were analyzed with Western blotting and RNA-seq. C57/BL6J and global FGF21 knockout (KO) mice were fed with a high-fat diet (HFD) to induce lipotoxicity and given with a long-acting mimetic of FGF21. Insulin resistance and ß-cell function were then assessed using homeostasis model assessment of insulin resistance (HOMA-IR) and insulinogenic index. FGF21 ameliorated PA-induced lipid accumulation, reversed cell apoptosis, and enhanced glucose-stimulated insulin secretion (GSIS) as impaired by lipotoxicity in islet ß-cells. Mechanistically, FGF21 exerted its beneficial effects through activation of AMPK-ACC (acetyl-CoA carboxylase) pathway and peroxisome proliferation-activated receptors (PPARs) δ/γ signaling, thus increasing the levels of carnitine palmitoyltransferase-1A (CPT1A) and leading to increased fatty acid (FA) oxidation and reduced lipid deposition in ß-cells. Interestingly, FGF21 reduced PA-induced cell death via restoration of the expression of apoptosis inhibitor Birc3. In vivo studies further showed that FGF21 is critical for islet insulinogenic capacity and normal function in the context of HFD-treated animals. FGF21 down-regulates islet cell lipid accumulation, probably via activation of AMPK-ACC and PPARδ/γ signaling, and reduces cell death under lipotoxicity, indicating that FGF21 is protective against lipotoxicity-induced ß-cell dysfunction and apoptosis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Apoptose/efeitos dos fármacos , Diabetes Mellitus Tipo 2/prevenção & controle , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Resistência à Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Obesidade/tratamento farmacológico , Ácido Palmítico/toxicidade , Acetil-CoA Carboxilase/metabolismo , Animais , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/deficiência , Fatores de Crescimento de Fibroblastos/genética , Insulina/metabolismo , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , PPAR gama/metabolismo , Ratos , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais
3.
Clin Sci (Lond) ; 133(1): 101-116, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30523046

RESUMO

G-protein coupled receptor 120 (GPR120) has been shown to act as an omega-3 unsaturated fatty acid sensor and is involved in insulin secretion. However, the underlying mechanism in pancreatic ß cells remains unclear. To explore the potential link between GPR120 and ß-cell function, its agonists docosahexaenoic acid (DHA) and GSK137647A were used in palmitic acid (PA)-induced pancreatic ß-cell dysfunction, coupled with GPR120 knockdown (KD) in MIN6 cells and GPR120 knockout (KO) mice to identify the underlying signaling pathways. In vitro and ex vivo treatments of MIN6 cells and islets isolated from wild-type (WT) mice with DHA and GSK137647A restored pancreatic duodenal homeobox-1 (PDX1) expression levels and ß-cell function via inhibiting PA-induced elevation of proinflammatory chemokines and activation of nuclear factor κB, c-Jun amino (N)-terminal kinases1/2 and p38MAPK signaling pathways. On the contrary, these GPR120 agonism-mediated protective effects were abolished in GPR120 KD cells and islets isolated from GPR120 KO mice. Furthermore, GPR120 KO mice displayed glucose intolerance and insulin resistance relative to WT littermates, and ß-cell functional related genes were decreased while inflammation was exacerbated in islets with increased macrophages in pancreas from GPR120 KO mice. DHA and GSK137647A supplementation ameliorated glucose tolerance and insulin sensitivity, as well as improved Pdx1 expression and islet inflammation in diet-induced obese WT mice, but not in GPR120 KO mice. These findings indicate that GPR120 activation is protective against lipotoxicity-induced pancreatic ß-cell dysfunction, via the mediation of PDX1 expression and inhibition of islet inflammation, and that GPR120 activation may serve as a preventative and therapeutic target for obesity and diabetes.


Assuntos
Dieta Hiperlipídica , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Ácido Palmítico/toxicidade , Pancreatite/prevenção & controle , Receptores Acoplados a Proteínas G/metabolismo , Transativadores/metabolismo , Compostos de Anilina/farmacologia , Animais , Glicemia/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Homeodomínio/genética , Mediadores da Inflamação/metabolismo , Insulina/sangue , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pancreatite/etiologia , Pancreatite/metabolismo , Pancreatite/patologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Transativadores/genética
4.
Int J Mol Sci ; 20(17)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438545

RESUMO

Pancreatic progenitor cells (PPCs) are the primary source for all pancreatic cells, including beta-cells, and thus the proliferation and differentiation of PPCs into islet-like cell clusters (ICCs) opens an avenue to providing transplantable islets for diabetic patients. Meanwhile, mesenchymal stem cells (MSCs) can enhance the development and function of different cell types of interest, but their role on PPCs remains unknown. We aimed to explore the mechanism-of-action whereby MSCs induce the in vitro and in vivo PPC/ICC development by means of our established co-culture system of human PPCs with human fetal bone marrow-derived MSCs. We examined the effect of MSC-conditioned medium on PPC proliferation and survival. Meanwhile, we studied the effect of MSC co-culture enhanced PPC/ICC function in vitro and in vivo co-/transplantation. Furthermore, we identified IGF1 as a critical factor responsible for the MSC effects on PPC differentiation and proliferation via IGF1-PI3K/Akt and IGF1-MEK/ERK1/2, respectively. In conclusion, our data indicate that MSCs stimulated the differentiation and proliferation of human PPCs via IGF1 signaling, and more importantly, promoted the in vivo engraftment function of ICCs. Taken together, our protocol may provide a mechanism-driven basis for the proliferation and differentiation of PPCs into clinically transplantable islets.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Pâncreas/citologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Apoptose/fisiologia , Células Cultivadas , Técnicas de Cocultura , Humanos , Células-Tronco Mesenquimais/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco/metabolismo
5.
Int J Mol Sci ; 20(10)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121855

RESUMO

BACKGROUND: Islet autophagy plays a role in glucose/lipid metabolism in type 2 diabetes mellitus. Meanwhile, fibroblast growth factor 21 (FGF21) has been found to regulate insulin sensitivity and glucose homeostasis. Whether FGF21 induces islet autophagy, remains to be elucidated. This study aimed to explore the physiological roles and signaling pathways involved in FGF21-stimulated islet autophagy under glucolipotoxic conditions. METHODS: C57/BL6J mice were fed a standard diet or high-fat diet (HFD) for 12 weeks, and islets were isolated from normal and FGF21 knockout (KO) mice. Isolated islets and INS-1E cells were exposed to normal and high-concentration glucose and palmitic acid with/without FGF21 or AMPK inhibitor compound C. Real-time PCR, Western blot and immunohistochemistry/transmission electron microscopy were performed for the expression of targeted genes/proteins. RESULTS: HFD-treated mice showed increases in fasting plasma glucose, body weight and impaired glucose tolerance; islet protein expression of FGF21 was induced after HFD treatment. Protein expression levels of FGF21 and LC3-II (autophagy marker) were induced in mouse islets treated with high concentrations of palmitic acid and glucose, while phosphorylation of AMPK was reduced, compared with controls. In addition, induction of LC3-II protein expression was reduced in islets isolated from FGF21 KO mice. Furthermore, exogenous administration of FGF21 diminished phosphorylation of AMPK and stimulated protein expression of LC3-II. Consistently, compound C significantly induced increased expression of LC3-II protein. CONCLUSIONS: Our data indicate that glucolipotoxicity-induced FGF21 activation mediates islet autophagy via AMPK inhibition, and further consolidate the evidence for the FGF21/analog being a pharmacotherapeutic target for obesity and its related T2DM.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Fatores de Crescimento de Fibroblastos/metabolismo , Ilhotas Pancreáticas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Ilhotas Pancreáticas/citologia , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais
6.
Molecules ; 24(13)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284538

RESUMO

Vitamin D deficiency or hypovitaminosis D is associated with increased risks of insulin resistance, type 2 diabetes mellitus (T2DM) and its related non-alcoholic fatty liver disease (NAFLD). Meanwhile, inappropriate over-activation of the renin-angiotensin system (RAS) in the liver leads to the hepatic dysfunction and increased risk of T2DM, such as abnormalities in lipid and glucose metabolism. Our previous findings have shown that calcitriol, an active metabolite of vitamin D, reduces hepatic triglyceride accumulation and glucose output in diabetic db/db mice and human hepatocellular cell HepG2 cells under insulin-resistant conditions. Notwithstanding the existence of this evidence, the protective action of vitamin D in the modulation of overexpressed RAS-induced metabolic abnormalities in the liver under insulin resistance remains to be elusive and investigated. Herein, we have reported the potential interaction between vitamin D and RAS; and its beneficial effects on the expression and function of the RAS components in HepG2 cells and primary hepatocytes under insulin-resistance states. Our study findings suggest that hormonal vitamin D (calcitriol) has modulatory action on the inappropriate upregulation of the hepatic RAS under insulin-resistant conditions. If confirmed, vitamin D supplementation might provide a nutraceutical potential as a cost-effective approach for the management of hepatic metabolic dysfunction as observed in T2DM and related NAFLD.


Assuntos
Vitamina D/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Glucose/metabolismo , Células Hep G2 , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Cell Physiol Biochem ; 51(2): 924-937, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30466091

RESUMO

BACKGROUND/AIMS: Islet metabolic disorder and inflammation contribute to the pathogenesis and progression of type 2 diabetes mellitus (T2DM). Irisin is a recently identified adipomyokine with protective effects on metabolic homeostasis and inflammation-suppressing effects in hepatic and vascular cells. The present study examined the effects of irisin on lipid metabolism and inflammation in ß cells under glucolipotoxic conditions. METHODS: Rat INS-1E ß cells and islets isolated from C57BL/6 mice were incubated in glucolipotoxic conditions with or without irisin. Intracellular lipid contents and lipogenic gene expression were determined by enzymatic colorimetric assays and real-time PCR, respectively. Inflammatory status was evidenced by Western blot analysis for the phosphorylation of nuclear factor-κB (NF-κB) p65 and real-time PCR analysis for the expression of pro-inflammatory genes. RESULTS: Irisin reversed glucolipotoxicity-induced intracellular non-esterified fatty acid (NEFA) and triglyceride accumulation, suppressed associated elevations in lipogenic gene expression, and phosphorylated acetyl-CoA-carboxylase (ACC) in INS-1E cells. These demonstrated effects were dependent on irisin-activated adenosine monophosphate-activated protein kinase (AMPK). Meanwhile, AMPK signaling mediated the protective effects of irisin on INS-1E cell insulin secretory ability and survival as well. Additionally, irisin inhibited phosphorylation of NF-κB p65 while decreasing the expression of pro-inflammatory genes in INS-1E cells under glucolipotoxic conditions. Moreover, irisin also improved insulin secretion, inhibited apoptosis, and restored ß-cell function-related gene expression in isolated mouse islets under glucolipotoxic conditions. CONCLUSION: Irisin attenuated excessive lipogenesis in INS-1E cells under glucolipotoxic state through activation of AMPK. Irisin also suppressed overnutrition-induced inflammation in INS-1E cells. Our findings implicate irisin as a promising therapeutic target for the treatment of islet lipid metabolic disorder and islet inflammation in T2DM.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Fibronectinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Ácidos Graxos não Esterificados/metabolismo , Glucose/farmacologia , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ácido Palmítico/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Fator de Transcrição RelA/metabolismo , Triglicerídeos/metabolismo
8.
Diabetes Obes Metab ; 20(3): 709-717, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29110392

RESUMO

AIM: To elucidate the role of Na+ /H+ exchanger 3 (NHE3) in sodium-glucose co-transporter 1 (SGLT1)-mediated small intestinal brush border membrane (BBM) glucose absorption and its functional implications in type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS: Human jejunal samples were obtained from patients undergoing gastrectomy. 14 C-glucose absorption was measured by liquid scintillation counting. NHE3 expression was suppressed by siRNA-mediated knockdown or augmented in Caco2 cells. Glucose and insulin tolerance in db/db and m+/db mice was assessed with oral and intraperitoneal glucose tolerance tests, and an intraperitoneal insulin tolerance test. Insulin resistance and ß-cell function were assessed using homeostatic model assessment of insulin resistance and ß-cell function. RESULTS: NHE3 expression was upregulated in db/db mouse jejunal BBM and high-glucose-treated Caco2 cells. NHE3 blockade impaired SGLT1-mediated glucose absorption in human jejunum, m+/db and db/db mouse jejunums, and Caco2 cells, via serum/glucocorticoid-regulated kinase 1 (SGK1). NHE3 knockdown suppressed SGLT1-mediated glucose uptake and reduced mRNA and protein levels of SGK1 and SGLT1, which were conversely enhanced by NHE3 overexpression. Chronic S3226 treatment diminished postprandial glucose levels and ameliorated glucose intolerance in db/db mice. CONCLUSION: NHE3 is essential in the modulation of small intestinal BBM glucose absorption. Our findings provide a rationale for future possible clinical application of NHE3 for treatment of T2DM through reducing intestinal glucose uptake and counteracting postprandial hyperglycaemia.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Intestino Delgado/metabolismo , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Trocador 3 de Sódio-Hidrogênio/antagonistas & inibidores , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Células CACO-2 , Diabetes Mellitus Tipo 2/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo/fisiologia , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Técnicas de Silenciamento de Genes , Glucose/farmacocinética , Intolerância à Glucose/fisiopatologia , Transportador de Glucose Tipo 2/metabolismo , Humanos , Hiperglicemia/fisiopatologia , Proteínas Imediatamente Precoces/metabolismo , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Período Pós-Prandial , Proteínas Serina-Treonina Quinases/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo
9.
Am J Physiol Endocrinol Metab ; 313(3): E292-E302, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28559437

RESUMO

Fibroblast growth factor 21 (FGF21) is a potent endocrine regulator with physiological effects on glucose and lipid metabolism and thus garners much attention for its translational potential for the management of obesity and related metabolic syndromes. FGF21 is mainly expressed in several metabolically active tissue organs, such as the liver, adipose tissue, skeletal muscle, and pancreas, with profound effects and therapeutic relevance. Emerging experimental and clinical data point to the demonstrated metabolic benefits of FGF21, which include, but are not limited to, weight loss, glucose and lipid metabolism, and insulin sensitivity. In addition, FGF21 also acts directly through its coreceptor ß-klotho in the brain to alter light-dark cycle activity. In this review, we critically appraise current advances in understanding the physiological actions of FGF21 and its role as a biomarker of various metabolic diseases, especially type 2 diabetes mellitus. We also discuss the potentially exciting role of FGF21 in improving our health and prolonging our life span. This information will provide a fuller understanding for further research into FGF21, as well as providing a scientific basis for potentially establishing health care guidelines for this promising molecule.


Assuntos
Ritmo Circadiano/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Fatores de Crescimento de Fibroblastos/fisiologia , Resistência à Insulina/fisiologia , Longevidade/fisiologia , Proteínas de Membrana/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/uso terapêutico , Humanos , Proteínas Klotho , Fígado/metabolismo , Músculo Esquelético/metabolismo , Obesidade/tratamento farmacológico , Pâncreas/metabolismo
10.
Clin Sci (Lond) ; 131(3): 247-260, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27980130

RESUMO

G-protein-coupled receptor 120 (GPR120) is a putative target for obesity and diabetes therapies. However, it remains controversial whether resident GPR120 plays a direct regulatory role in islet ß-cell insulin secretion. The present study examined this issue in isolated rodent islets and rat ß-cell line INS-1E, and assessed the role of GPR120 in islet insulin secretion in obese non-diabetic (OND) and diabetic states. GPR120 expression was detected in rodent islet ß-cells. Docosahexaenoic acid (DHA) and synthetic GPR120 agonist GSK137647 (GSK) augmented insulin release from rat/mouse islets and INS-1E; DHA effects were partially mediated by GPR40. GPR120 knockdown and overexpression attenuated and enhanced DHA effects in INS-1E respectively. DHA and GSK improved postprandial hyperglycaemia of diabetic mice. Inhibition of calcium signalling in INS-1E reduced GPR120 activation-induced insulinotropic effects. The insulinotropic effects of DHA/GSK were amplified in OND rat islets, but diminished in diabetic rat islets. GPR120 and peroxisome proliferator-activated receptor γ (PPARγ) expression were elevated in OND islets and palmitic acid (PA)-treated INS-1E, but reduced in diabetic islets and high glucose-treated INS-1E. PPARγ activation increased GPR120 expression in rat islets and INS-1E. DHA and GSK induced protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) phosphorylation in rodent islets and INS-1E, and these effects were altered in OND and diabetic states. Taken together, the present study indicates that (i) GPR120 activation has an insulinotropic influence on ß-cells with the involvement of calcium signalling; (ii) GPR120 expression in ß-cells and GPR120-mediated insulinotropic effects are altered in OND and diabetic states in distinct ways, and these alterations may be mediated by PPARγ.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Compostos de Anilina/farmacologia , Animais , Apoptose , Sinalização do Cálcio , Linhagem Celular , Ácidos Docosa-Hexaenoicos , Técnicas de Silenciamento de Genes , Teste de Tolerância a Glucose , Secreção de Insulina , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Ratos Zucker , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Sulfonamidas/farmacologia
11.
Med Res Rev ; 36(4): 672-704, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27031294

RESUMO

Fibroblast growth factor (FGF) 21 is a distinctive member of the FGF family that functions as an endocrine factor. It is expressed predominantly in the liver, but is also found in adipose tissue and the pancreas. Pharmacological studies have shown that FGF21 normalizes glucose and lipid homeostasis, thereby preventing the development of metabolic disorders, such as obesity and diabetes. Despite growing evidence for the therapeutic potential of FGF21, paradoxical increases of FGF21 in different disease conditions point to the existence of FGF21 resistance. In this review, we give a critical appraisal of recent advances in the understanding of the regulation of FGF21 production under various physiological conditions, its antidiabetic actions, and the clinical implications. We also discuss recent preclinical and clinical trials using engineered FGF21 analogs in the management of diabetes, as well as the potential side effects of FGF21 therapy.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Hipoglicemiantes/farmacologia , Animais , Fatores de Crescimento de Fibroblastos/biossíntese , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/uso terapêutico , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Terapia de Alvo Molecular , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Am J Physiol Endocrinol Metab ; 310(4): E289-300, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670488

RESUMO

Fibroblast growth factor (FGF) 19 is a member of the FGF15/19 subfamily of FGFs that includes FGF15/19, FGF21, and FGF23. FGF19 has been shown to have profound effects on liver metabolism and regeneration. FGF19 binds to FGFR4 and its coreceptor ß-Klotho to activate intracellular kinases, including Erk1/2. Studies have shown that proinflammatory cytokines such as TNFα impair FGF21 signaling in adipose cells by repressing ß-Klotho expression. However, little is known about the effects of inflammation on the FGF19 pathway in the liver. In the present study, we found that lipopolysaccharide (LPS) inhibited ß-Klotho and Fgfr4 expression in livers in mice, whereas LPS had no effects on the two FGF19 receptors in Huh-7 and HepG2 cells. Of the three inflammatory cytokines TNFα, IL-1ß, and IL-6, IL-1ß drastically inhibited ß-Klotho expression, whereas TNFα and IL-6 had no or minor effects. None of the three cytokines had any effects on FGFR4 expression. IL-1ß directly inhibited ß-Klotho transcription, and this inhibition required both the JNK and NF-κB pathways. In addition, IL-1ß inhibited FGF19-induced Erk1/2 activation and cell proliferation. These results suggest that inflammation and IL-1ß play an important role in regulating FGF19 signaling and function in the liver.


Assuntos
Fatores de Crescimento de Fibroblastos/farmacologia , Hepatócitos/efeitos dos fármacos , Interleucina-1beta/farmacologia , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/efeitos dos fármacos , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento de Fibroblastos 23 , Células Hep G2 , Humanos , Interleucina-6/farmacologia , Proteínas Klotho , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/efeitos dos fármacos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
13.
Carcinogenesis ; 36 Suppl 1: S89-110, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106145

RESUMO

Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos Ambientais/efeitos adversos , Morte Celular/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Substâncias Perigosas/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Animais , Homeostase/efeitos dos fármacos , Humanos
14.
Am J Physiol Endocrinol Metab ; 309(11): E887-99, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26487007

RESUMO

Glucose is the prominent molecule that characterizes diabetes and, like the vast majority of nutrients in our diet, it is absorbed and enters the bloodstream directly through the small intestine; hence, small intestine physiology impacts blood glucose levels directly. Accordingly, intestinal regulatory modulators represent a promising avenue through which diabetic blood glucose levels might be moderated clinically. Despite the critical role of small intestine in blood glucose homeostasis, most physiological diabetes research has focused on other organs, such as the pancreas, kidney, and liver. We contend that an improved understanding of intestinal regulatory mediators may be fundamental for the development of first-line preventive and therapeutic interventions in patients with diabetes and diabetes-related diseases. This review summarizes the major important intestinal regulatory mediators, discusses how they influence intestinal glucose absorption, and suggests possible candidates for future diabetes research and the development of antidiabetic therapeutic agents.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Sacarose Alimentar/metabolismo , Glucose/metabolismo , Absorção Intestinal , Modelos Biológicos , Animais , Glicemia/análise , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/terapia , Sacarose Alimentar/efeitos adversos , Humanos , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo
15.
Dev Dyn ; 243(3): 415-27, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24166718

RESUMO

BACKGROUND: We previously identified a local renin-angiotensin system (RAS) regulating the differentiation of an isolated population of human pancreatic progenitor cells. Major RAS components that regulate organogenesis have been also described in embryos; however, it is not known whether a local RAS is present in the fetal pancreas. We now hypothesize that angiotensin II type 1 (AT1 ) and type 2 (AT2 ) receptors are expressed in mouse embryonic pancreas and involved in regulating endocrine cell development. RESULTS: Differential expression of AT1 and AT2 receptors was observed in the mouse pancreata in late embryogenesis. Systemic AT2 , but not AT1 , receptor blockade during the second transition in pancreatic development (from embryonic day 12.0 onward) reduced the ß-cell to α-cell ratio of the neonate islets, impaired their insulin secretory function and the glucose tolerance of the pups. Studies with pancreas explants ex vivo revealed regulation by AT2 receptors of the differentiation of pancreatic progenitors into insulin-producing cells and of the proliferation of the differentiated cell, actions that did not result from reduced angiogenesis as a secondary effect of AT2 receptor antagonism. CONCLUSIONS: These data revealed an AT2 receptor-mediated mechanism regulating pancreatic endocrine cell development in vivo.


Assuntos
Diferenciação Celular/fisiologia , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Pâncreas Exócrino , Receptor Tipo 2 de Angiotensina/biossíntese , Células-Tronco , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Teste de Tolerância a Glucose , Humanos , Camundongos , Camundongos Endogâmicos ICR , Pâncreas Exócrino/citologia , Pâncreas Exócrino/embriologia , Receptor Tipo 1 de Angiotensina/biossíntese , Células-Tronco/citologia , Células-Tronco/metabolismo
16.
Exp Physiol ; 99(1): 220-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24036592

RESUMO

The carotid body (CB) plays an important role in the alteration of cardiorespiratory activity in chronic intermittent hypoxia (IH) associated with sleep-disordered breathing, which may be mediated by local expression of the renin-angiotensin system (RAS). We hypothesized a pathogenic role for IH-induced RAS expression in the CB. The CB expression of RAS components was examined in rats exposed to IH resembling a severe sleep-apnoeic condition for 7 days. In situ hybridization showed an elevated expression of angiotensinogen in the CB glomus cells in the hypoxic group when compared with the normoxic control group. Immunohistochemical studies and Western blot analysis revealed increases in the protein level of both angiotensinogen and angiotensin II type 1 (AT1) receptors in the hypoxic group, which were localized to the glomic clusters containing tyrosine hydroxylase. RT-PCR studies confirmed that levels of the mRNA expression of angiotensinogen, angiotensin-converting enzyme, AT1a and AT2 receptors were significantly increased in the CBs of the hypoxic rats. Functionally, the [Ca(2+)]i response to exogenous angiotensin II was enhanced in fura-2-loaded glomus cells dissociated from hypoxic rats when compared with those of the normoxic control animals. Pretreatment with losartan, but not PD123319, abolished the angiotensin II-induced [Ca(2+)]i response, suggesting an involvement of AT1 receptors. Moreover, daily treatment of the IH group of rats with losartan attenuated the levels of oxidative stress, gp91(phox) expression and macrophage infiltration in the CB. Collectively, the upregulated local RAS expression could play a pathogenic role in the augmented CB activity and local inflammation via AT1 receptor activation during IH conditions in patients with sleep-disordered breathing.


Assuntos
Corpo Carotídeo/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Sistema Renina-Angiotensina/genética , Regulação para Cima/genética , Angiotensina II/genética , Angiotensina II/metabolismo , Angiotensinogênio/genética , Angiotensinogênio/metabolismo , Animais , Cálcio/metabolismo , Fura-2/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Estresse Oxidativo/genética , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Síndromes da Apneia do Sono/genética , Síndromes da Apneia do Sono/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Sheng Li Xue Bao ; 66(1): 23-9, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24553866

RESUMO

Peripheral chemoreceptors in the carotid body play important roles in the transduction of chemical stimuli in the arterial blood to the central for eliciting the chemoreflex, which mediates the ventilatory and circulatory responses to hypoxia. The activity of carotid chemoreceptor is modulated and significantly contributes to the ventilatory acclimatization at high altitude. In addition, the carotid chemoreceptor activity is augmented in patients with sleep-disordered breathing, notably in central or obstructive sleep apnea, and also in experimental animals. Thus, the carotid body functions to maintain the oxygen homeostasis, whereas anomalous carotid chemoreceptor activities could be both adaptive and pathogenic in sleep apnea. This review aims to summarize the cellular and molecular mechanisms that could mediate the augmented chemoreceptor activity induced by intermittent hypoxia. Our recent findings suggest a pathogenic role of inflammation mediated by an upregulation of renin-angiotensin system in the carotid body in the over-activity of the chemoreflex. These locally regulated mechanisms are proposed to be a significant part of the hypoxia-mediated maladaptive changes of the carotid body function, which could play a role in the pathophysiology of sleep apnea.


Assuntos
Células Quimiorreceptoras/patologia , Hipóxia/fisiopatologia , Síndromes da Apneia do Sono/fisiopatologia , Aclimatação , Animais , Corpo Carotídeo/citologia , Humanos , Sistema Renina-Angiotensina
18.
Stem Cells ; 30(3): 525-36, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22162314

RESUMO

Local renin-angiotensin systems (RASs) regulate the differentiation of tissue progenitors. However, it is not known whether such systems can regulate the development of pancreatic progenitor cells (PPCs). To address this issue, we characterized the expression profile of major RAS components in human fetal PPC preparations and examined their effects on the differentiation of PPCs into functional islet-like cell clusters (ICCs). We found that expression of RAS components was highly regulated throughout PPC differentiation and that locally generated angiotensin II (Ang II) maintained PPC growth and differentiation via Ang II type 1 and type 2 (AT(1) and AT(2)) receptors. In addition, we observed colocalization of AT(2) receptors with critical ß-cell phenotype markers in PPCs/ICCs, as well as AT(2) receptor upregulation during differentiation, suggesting that these receptors may regulate ß-cell development. In fact, we found that AT(2) , but not AT(1) , receptor was a key mediator of Ang II-induced upregulation of transcription factors important in ß-cell development. Furthermore, lentivirus-mediated knockdown of AT(2) receptor suppressed the expression of these transcription factors in ICCs. Transplantation of AT(2) receptor-depleted ICCs into immune-privileged diabetic mice failed to ameliorate hyperglycemia, implying that AT(2) receptors are indispensable during ICC maturation in vivo. These data strongly indicate that a local RAS is involved in governing the functional maturation of pancreatic progenitors toward the endocrine lineage.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/citologia , Receptor Tipo 2 de Angiotensina/fisiologia , Células-Tronco/citologia , Angiotensina II/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/terapia , Feto/citologia , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Hiperglicemia/induzido quimicamente , Hiperglicemia/terapia , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Nus , Mitose , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/genética , Sistema Renina-Angiotensina , Células-Tronco/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
19.
Am J Physiol Endocrinol Metab ; 303(5): E669-81, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22811473

RESUMO

The inhibitory effects of the angiotensin-converting enzyme (ACE)-ANG II-angiotensin type 1 (AT1) receptor axis on jejunal glucose uptake and the reduced expression of this system in type 1 diabetes mellitus (T1DM) have been documented previously. The ACE2-ANG-(1-7)-Mas receptor axis is thought to oppose the actions of the ACE-ANG II-AT1 receptor axis in heart, liver, and kidney. However, the possible involvement of the ACE2-ANG-(1-7)-Mas receptor system on enhanced jejunal glucose transport in T1DM has yet to be determined. Rat everted jejunum and Caco-2 cells were used to determine the effects of ANG-(1-7) on glucose uptake and to study the ACE2-ANG-(1-7)-Mas receptor signaling pathway. Expression of target gene and protein in jejunal enterocytes and human Caco-2 cells were quantified using real-time PCR and Western blotting. T1DM increased jejunal protein and mRNA expression of ACE2 (by 59 and 173%, respectively) and Mas receptor (by 55 and 100%, respectively) in jejunum. One millimolar ANG-(1-7) reduced glucose uptake in jejunum and Caco-2 cells by 30.6 and 30.3%, respectively, effects that were abolished following addition of 1 µM A-779 (a Mas receptor blocker) or 1 µM GF-109203X (protein kinase C inhibitor) to incubation buffer for jejunum or Caco-2 cells, respectively. Finally, intravenous treatment of animals with ANG-(1-7) significantly improved oral glucose tolerance in T1DM but not control animals. In conclusion, enhanced activity of the ACE2-ANG-(1-7)-Mas receptor axis in jejunal enterocytes is likely to moderate the T1DM-induced increase in jejunal glucose uptake resulting from downregulation of the ACE-ANG II-AT1 receptor axis. Therefore, altered activity of both ACE and ACE2 systems during diabetes will determine the overall rate of glucose transport across the jejunal epithelium.


Assuntos
Angiotensina I/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Enterócitos/metabolismo , Jejuno/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima , Angiotensina I/administração & dosagem , Angiotensina I/genética , Angiotensina I/uso terapêutico , Enzima de Conversão de Angiotensina 2 , Animais , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Enterócitos/efeitos dos fármacos , Enterócitos/patologia , Glucose/metabolismo , Humanos , Hiperglicemia/prevenção & controle , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/metabolismo , Hipoglicemiantes/uso terapêutico , Técnicas In Vitro , Injeções Intravenosas , Jejuno/efeitos dos fármacos , Jejuno/patologia , Masculino , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/uso terapêutico , Peptidil Dipeptidase A/genética , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética
20.
Toxicol Appl Pharmacol ; 262(1): 80-90, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22561874

RESUMO

Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Diterpenos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Adenocarcinoma/patologia , Animais , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Camptotecina/farmacologia , Camptotecina/toxicidade , Caspases/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Diterpenos/toxicidade , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/patologia , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa