Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(13): e2118160119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312368

RESUMO

SignificanceCalcium release-activated calcium (CRAC) channels play key roles in the regulation of cellular signaling, transcription, and migration. Here, we describe the design, chemical synthesis, and characterization of photoswitchable channel inhibitors that can be switched on and off depending on the wavelength of light used. We use the compounds to induce light-dependent modulation of channel activity and downstream gene expression in human immune cells. We further expand the usage of the compounds to control seeding of cancer cells in target tissue and regulation of response to noxious stimuli in vivo in mice.


Assuntos
Canais de Cálcio , Canais de Cálcio Ativados pela Liberação de Cálcio , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Camundongos , Molécula 1 de Interação Estromal/metabolismo
2.
J Neurosci ; 40(49): 9346-9363, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33115929

RESUMO

The output from the peripheral terminals of primary nociceptive neurons, which detect and encode the information regarding noxious stimuli, is crucial in determining pain sensation. The nociceptive terminal endings are morphologically complex structures assembled from multiple branches of different geometry, which converge in a variety of forms to create the terminal tree. The output of a single terminal is defined by the properties of the transducer channels producing the generation potentials and voltage-gated channels, translating the generation potentials into action potential (AP) firing. However, in the majority of cases, noxious stimuli activate multiple terminals; thus, the output of the nociceptive neuron is defined by the integration and computation of the inputs of the individual terminals. Here, we used a computational model of nociceptive terminal tree to study how the architecture of the terminal tree affects the input-output relation of the primary nociceptive neurons. We show that the input-output properties of the nociceptive neurons depend on the length, the axial resistance (Ra), and location of individual terminals. Moreover, we show that activation of multiple terminals by a capsaicin-like current allows summation of the responses from individual terminals, thus leading to increased nociceptive output. Stimulation of the terminals in simulated models of inflammatory or neuropathic hyperexcitability led to a change in the temporal pattern of AP firing, emphasizing the role of temporal code in conveying key information about changes in nociceptive output in pathologic conditions, leading to pain hypersensitivity.SIGNIFICANCE STATEMENT Noxious stimuli are detected by terminal endings of primary nociceptive neurons, which are organized into morphologically complex terminal trees. The information from multiple terminals is integrated along the terminal tree, computing the neuronal output, which propagates toward the CNS, thus shaping the pain sensation. Here, we revealed that the structure of the nociceptive terminal tree determines the output of nociceptive neurons. We show that the integration of noxious information depends on the morphology of the terminal trees and how this integration and, consequently, the neuronal output change under pathologic conditions. Our findings help to predict how nociceptive neurons encode noxious stimuli and how this encoding changes in pathologic conditions, leading to pain.


Assuntos
Nociceptores/fisiologia , Nociceptores/ultraestrutura , Nervos Periféricos/fisiologia , Nervos Periféricos/ultraestrutura , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/ultraestrutura , Potenciais de Ação/fisiologia , Capsaicina/farmacologia , Simulação por Computador , Humanos , Modelos Neurológicos , Neuralgia/fisiopatologia , Nociceptividade , Doenças do Sistema Nervoso Periférico/fisiopatologia , Canais de Sódio/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
3.
J Physiol ; 595(3): 713-738, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27506492

RESUMO

KEY POINTS: Neuroinflammation associated with CNS insults leads to neuronal hyperexcitability, which may culminate in epileptiform discharges. Application of the endotoxin lipopolysaccharide (LPS) to brain tissue initiates a neuroinflammatory cascade, providing an experimental model to study the mechanisms of neuroinflammatory neuronal hyperexcitability. Here we show that LPS application to hippocampal slices markedly enhances the excitability of CA1 pyramidal cells by inhibiting a specific potassium current, the M-current, generated by KV 7/M channels, which controls the excitability of almost every neuron in the CNS. The LPS-induced M-current inhibition is triggered by sequential activation of microglia, astrocytes and pyramidal cells, mediated by metabotropic purinergic and glutamatergic transmission, leading to blockade of KV 7/M channels by calcium released from intracellular stores. The identification of the downstream molecular target of neuroinflammation, namely the KV 7/M channel, potentially has far reaching implications for the understanding and treatment of many acute and chronic brain disorders. ABSTRACT: Acute brain insults and many chronic brain diseases manifest an innate inflammatory response. The hallmark of this response is glia activation, which promotes repair of damaged tissue, but also induces structural and functional changes that may lead to an increase in neuronal excitability. We have investigated the mechanisms involved in the modulation of neuronal activity by acute inflammation. Initiating inflammatory responses in hippocampal tissue rapidly led to neuronal depolarization and repetitive firing even in the absence of active synaptic transmission. This action was mediated by a complex metabotropic purinergic and glutamatergic glia-to-neuron signalling cascade, leading to the blockade of neuronal KV 7/M channels by Ca2+ released from internal stores. These channels generate the low voltage-activating, non-inactivating M-type K+ current (M-current) that controls intrinsic neuronal excitability, and its inhibition was the predominant cause of the inflammation-induced hyperexcitability. Our discovery that the ubiquitous KV 7/M channels are the downstream target of the inflammation-induced cascade, has far reaching implications for the understanding and treatment of many acute and chronic brain disorders.


Assuntos
Canais de Potássio KCNQ/fisiologia , Lipopolissacarídeos/farmacologia , Células Piramidais/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Região CA1 Hipocampal/citologia , Cálcio/fisiologia , Masculino , Células Piramidais/fisiologia , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Receptores Purinérgicos P2Y1/fisiologia
4.
Biochim Biophys Acta ; 1863(12): 2868-2880, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27627464

RESUMO

The nociceptive noxious heat-activated receptor - TRPV1, conducts calcium and sodium, thus producing a depolarizing receptor potential, leading to activation of nociceptive neurons. TRPV1-mediated calcium and sodium influx is negatively modulated by calcium, via calcium-dependent desensitization of TRPV1 channels. A mitochondrial Ca2+ uniporter - MCU, controls mitochondrial Ca2+ entry while a sodium/calcium transporter - NCLX shapes calcium and sodium transients by mediating sodium entry into and removing calcium from the mitochondria. The functional interplay between TRPV1, MCU and NCLX, in controlling the cytosolic and mitochondrial calcium and sodium transients and subsequently the nociceptive excitability, is poorly understood. Here, we used cytosolic and mitochondrial fluorescent calcium and sodium imaging together with electrophysiological recordings of TRPV1-induced currents in HEK293T cells and nociceptor-like dissociated rat dorsal root ganglion neurons, while modulating NCLX or MCU expression using specific small interfering RNA (siNCLX). We show that the propagation of the TRPV1-induced cytosolic calcium and sodium fluxes into mitochondria is dependent on coordinated activity of NCLX and MCU. Thus, knocking-down of NCLX triggers down regulation of MCU dependent mitochondrial Ca2+ uptake. This in turn decreases rate and amplitude of TRPV1-mediated cytosolic calcium, which inhibits capsaicin-induced inward current and neuronal firing. TRPV1-mediated currents were fully rescued by intracellular inclusion of the fast calcium chelator BAPTA. Finally, NCLX controls capsaicin-induced cell death, by supporting massive mitochondrial Ca2+ shuttling. Altogether, our results suggest that NCLX, by regulating cytosolic and mitochondrial ionic transients, modulates calcium-dependent desensitization of TRPV1 channels, thereby, controlling nociceptive signaling.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Nociceptores/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Sódio/metabolismo , Canais de Cátion TRPV/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Canais de Cálcio/genética , Capsaicina/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Proteínas Mitocondriais , Imagem Molecular , Nociceptores/citologia , Nociceptores/efeitos dos fármacos , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Análise de Célula Única , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/genética , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética
5.
Curr Top Membr ; 80: 233-254, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28863818

RESUMO

Cholesterol is an essential compound of higher eukaryotic cell membranes and a known modulator of ion channel activity. Changes in phospholipids and cholesterol composition of cell membranes are known to alter the activity of ion channels. However, there is little knowledge on the effects of cholesterol on transient receptor potential (TRP) channels. In this study, we explore the effects of cholesterol depletion on the Drosophila photoreceptor channel TRP-like (TRPL), when expressed in tissue culture cells. Depletion of membrane cholesterol with methyl-ß-cyclodextrin (MßCD) induced fast (<100s) suppression of spontaneous TRPL channel activity, a typical state of expressed TRPL channels in Drosophila S2 cells. An equally fast suppression of receptor-induced TRPL channel activity in HEK293 cells, downstream of phospholipase C (PLC) activation, was also induced by MßCD. Biochemical experiments showed binding of TRPL to immobilized cholesterol, suggesting direct binding of cholesterol to TRPL. Exploring the effects of several mutations in a putative cholesterol-binding site of TRPL was inconclusive as some did not render the channel insensitive to cholesterol depletion while others rendered the channel inactive. We conclude that (i) cholesterol is essential for TRPL channel activity, (ii) TRPL channels interact with cholesterol, and (iii) the binding site of cholesterol in TRPL differs from the putative binding site of TRPV1. Thus, the fast and strong effects of cholesterol depletion on the TRPL channel activity suggest that cholesterol is an important component of fly photoreceptor signaling membrane.


Assuntos
Membrana Celular/metabolismo , Colesterol/deficiência , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Motivos de Aminoácidos , Animais , Colesterol/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Células HEK293 , Humanos , Mutação , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética
6.
J Neurophysiol ; 113(2): 601-19, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25355965

RESUMO

Tetrodotoxin-resistant (TTX-r) sodium channels are key players in determining the input-output properties of peripheral nociceptive neurons. Changes in gating kinetics or in expression levels of these channels by proinflammatory mediators are likely to cause the hyperexcitability of nociceptive neurons and pain hypersensitivity observed during inflammation. Proinflammatory mediator, tumor necrosis factor-α (TNF-α), is secreted during inflammation and is associated with the early onset, as well as long-lasting, inflammation-mediated increase in excitability of peripheral nociceptive neurons. Here we studied the underlying mechanisms of the rapid component of TNF-α-mediated nociceptive hyperexcitability and acute pain hypersensitivity. We showed that TNF-α leads to rapid onset, cyclooxygenase-independent pain hypersensitivity in adult rats. Furthermore, TNF-α rapidly and substantially increases nociceptive excitability in vitro, by decreasing action potential threshold, increasing neuronal gain and decreasing accommodation. We extended on previous studies entailing p38 MAPK-dependent increase in TTX-r sodium currents by showing that TNF-α via p38 MAPK leads to increased availability of TTX-r sodium channels by partial relief of voltage dependence of their slow inactivation, thereby contributing to increase in neuronal gain. Moreover, we showed that TNF-α also in a p38 MAPK-dependent manner increases persistent TTX-r current by shifting the voltage dependence of activation to a hyperpolarized direction, thus producing an increase in inward current at functionally critical subthreshold voltages. Our results suggest that rapid modulation of the gating of TTX-r sodium channels plays a major role in the mediated nociceptive hyperexcitability of TNF-α during acute inflammation and may lead to development of effective treatments for inflammatory pain, without modulating the inflammation-induced healing processes.


Assuntos
Nociceptores/fisiologia , Canais de Sódio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Acetamidas , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Simulação por Computador , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiopatologia , Lacosamida , Masculino , Modelos Neurológicos , Nociceptores/efeitos dos fármacos , Dor/fisiopatologia , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Inflamm Bowel Dis ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478397

RESUMO

BACKGROUND: Transient receptor potential vanilloid 1 (TRPV1) cation channels, expressed on nociceptors, are well established as key contributors to abdominal pain in inflammatory bowel disease (IBD). Previous attempts at blocking these channels have been riddled with side effects. Here, we propose a novel treatment strategy, utilizing the large pore of TRPV1 channels as a drug delivery system to selectively inhibit visceral nociceptors. METHODS: We induced colitis in rats using intrarectal dinitrobenzene sulfonic acid. Visceral hypersensitivity, spontaneous pain, and responsiveness of the hind paws to noxious heat stimuli were examined before and after the intrarectal application of membrane-impermeable sodium channel blocker (QX-314) alone or together with TRPV1 channel activators or blockers. RESULTS: Intrarectal co-application of QX-314 with TRPV1 channel activator capsaicin significantly inhibited colitis-induced gut hypersensitivity. Furthermore, in the model of colitis, but not in naïve rats, QX-314 alone was sufficient to reverse gut hypersensitivity. The blockade of TRPV1 channels prevented this effect of QX-314. Finally, applying QX-314 alone to the inflamed gut inhibited colitis-induced ongoing pain. CONCLUSIONS: Selective silencing of gut nociceptors by a membrane-impermeable sodium channel blocker entering via exogenously or endogenously activated TRPV1 channels diminishes IBD-induced gut hypersensitivity. The lack of effect on naïve rats suggests a selective analgesic effect in the inflamed gut. Our results suggest that in the colitis model, TRPV1 channels are tonically active. Furthermore, our results emphasize the role of TRPV1-expressing nociceptive fibers in colitis-induced pain. These findings provide proof of concept for using charged activity blockers for the blockade of IBD-associated abdominal pain.


Here, we show that the selective silencing of a specific subtype of nociceptive neurons innervating the gut mitigates colitis-induced visceral hypersensitivity and pain. Our results provide a basis for developing effective and selective treatments for inflammatory bowel disease pain.

8.
J Biol Chem ; 287(2): 1436-47, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22065576

RESUMO

In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P(2) in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P(2) was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P(2) is not an inhibitor of TRPL channel activation. PI(4,5)P(2) hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P(2) levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P(2) is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating.


Assuntos
Proteínas de Drosophila/metabolismo , Ativação do Canal Iônico/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transdução de Sinais/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Membrana Celular , Diglicerídeos/genética , Diglicerídeos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Ativação Enzimática , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Células HEK293 , Humanos , Fosfatidilinositol 4,5-Difosfato/genética , Canais de Potencial de Receptor Transitório/genética , Fosfolipases Tipo C/genética
9.
Neurobiol Pain ; 14: 100139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927365

RESUMO

The excitatory and inhibitory interneurons of superficial laminae I-II of the spinal dorsal horn (SDH) receive and process pain-related information from the primary afferents and transmit it to the brain via the projection neurons. Thus, the interaction between excitatory and inhibitory SDH interneurons is crucial in determining the output from the spinal cord network. Disruption of this interaction in pathological conditions leads to increased SDH output to the higher brain centers, which could underlie pathological pain. Here, we examined whether the changes in the intrinsic SDH connectivity also occur with age, possibly underlying age-related increase in pain sensitivity. Using Vgat;tdTomato transgenic mouse line, we compared the spontaneous inhibitory postsynaptic currents (sIPSCs) in inhibitory tdTomato+ and excitatory tdTomato- interneurons between adult (3-5 m.o.) and aged (12-13 m.o.) mice. We demonstrate that in adult mice, the amplitude and frequency of the sIPSCs on the excitatory interneurons were significantly higher than on inhibitory interneurons. These differences were annulled in aged mice. Further, we show that in aged mice, excitatory neurons receive less inhibition than in adult mice. This could lead to overall disinhibition of the SDH network, which might underlie increased pain perception among the aged population.

10.
Pain ; 164(2): 443-460, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36149026

RESUMO

ABSTRACT: Inflammation modifies the input-output properties of peripheral nociceptive neurons such that the same stimulus produces enhanced nociceptive firing. This increased nociceptive output enters the superficial dorsal spinal cord (SDH), an intricate neuronal network composed largely of excitatory and inhibitory interneurons and a small percentage of projection neurons. The SDH network comprises the first central nervous system network integrating noxious information. Using in vivo calcium imaging and a computational approach, we characterized the responsiveness of the SDH network in mice to noxious stimuli in normal conditions and investigated the changes in SDH response patterns after acute burn injury-induced inflammation. We show that the application of noxious heat stimuli to the hind paw of naïve mice results in an overall increase in SDH network activity. Single-cell response analysis reveals that 70% of recorded neurons increase or suppress their activity, while ∼30% of neurons remain nonresponsive. After acute burn injury and the development of inflammatory hyperalgesia, application of the same noxious heat stimuli leads to the activation of previously nonresponding neurons and desuppression of suppressed neurons. We further demonstrate that an increase in afferent activity mimics the response of the SDH network to noxious heat stimuli under inflammatory conditions. Using a computational model of the SDH network, we predict that the changes in SDH network activity result in overall increased activity of excitatory neurons, amplifying the output from SDH to higher brain centers. We suggest that during acute local peripheral inflammation, the SDH network undergoes dynamic changes promoting hyperalgesia.


Assuntos
Hiperalgesia , Medula Espinal , Camundongos , Animais , Hiperalgesia/etiologia , Medula Espinal/fisiologia , Neurônios , Interneurônios , Inflamação
11.
Pain ; 164(6): 1388-1401, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645177

RESUMO

ABSTRACT: Physiological or pathology-mediated changes in neuronal activity trigger structural plasticity of the action potential generation site-the axon initial segment (AIS). These changes affect intrinsic neuronal excitability, thus tuning neuronal and overall network output. Using behavioral, immunohistochemical, electrophysiological, and computational approaches, we characterized inflammation-related AIS plasticity in rat's superficial (lamina II) spinal cord dorsal horn (SDH) neurons and established how AIS plasticity regulates the activity of SDH neurons, thus contributing to pain hypersensitivity. We show that in naive conditions, AIS in SDH inhibitory neurons is located closer to the soma than in excitatory neurons. Shortly after inducing inflammation, when the inflammatory hyperalgesia is at its peak, AIS in inhibitory neurons is shifted distally away from the soma. The shift in AIS location is accompanied by the decrease in excitability of SDH inhibitory neurons. These AIS location and excitability changes are selective for inhibitory neurons and reversible. We show that AIS shift back close to the soma, and SDH inhibitory neurons' excitability increases to baseline levels following recovery from inflammatory hyperalgesia. The computational model of SDH inhibitory neurons predicts that the distal shift of AIS is sufficient to decrease the intrinsic excitability of these neurons. Our results provide evidence of inflammatory pain-mediated AIS plasticity in the central nervous system, which differentially affects the excitability of inhibitory SDH neurons and contributes to inflammatory hyperalgesia.


Assuntos
Segmento Inicial do Axônio , Animais , Ratos , Segmento Inicial do Axônio/fisiologia , Hiperalgesia , Neurônios/fisiologia , Dor , Inflamação , Medula Espinal , Plasticidade Neuronal/fisiologia
12.
J Clin Invest ; 133(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454632

RESUMO

BACKGROUNDChronic pain is a debilitating illness with currently limited therapy, in part due to difficulties in translating treatments derived from animal models to patients. The transient receptor potential vanilloid 1 (TRPV1) channel is associated with noxious heat detection and inflammatory pain, and reports of adverse effects in human trials have hindered extensive efforts in the clinical development of TRPV1 antagonists as novel pain relievers.METHODSWe examined 2 affected individuals (A1 and A2) carrying a homozygous missense mutation in TRPV1, rendering the channel nonfunctional. Biochemical and functional assays were used to analyze the mutant channel. To identify possible phenotypes of the affected individuals, we performed psychophysical and medical examinations.RESULTSWe demonstrated that diverse TRPV1 activators, acting at different sites of the channel protein, were unable to open the cloned mutant channel. This finding was not a consequence of impairment in the expression, cellular trafficking, or assembly of protein subunits. The affected individuals were insensitive to application of capsaicin to the mouth and skin and did not demonstrate aversive behavior toward capsaicin. Furthermore, quantitative sensory testing of A1 revealed an elevated heat-pain threshold but also, surprisingly, an elevated cold-pain threshold and extensive neurogenic inflammatory, flare, and pain responses following application of the TRPA1 channel activator mustard oil.CONCLUSIONOur study provides direct evidence in humans for pain-related functional changes linked to TRPV1, which is a prime target in the development of pain relievers.FUNDINGSupported by the Israel Science Foundation (368/19); Teva's National Network of Excellence in Neuroscience grant (no. 0394886) and Teva's National Network of Excellence in Neuroscience postdoctoral fellowship.


Assuntos
Canais de Potencial de Receptor Transitório , Animais , Humanos , Capsaicina/farmacologia , Nociceptividade , Canais de Cátion TRPV/metabolismo , Dor/genética
13.
J Cell Sci ; 123(Pt 18): 3112-24, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20736310

RESUMO

The mucolipin (TRPML) subfamily of transient receptor potential (TRP) cation channels consists of three members that play various roles in the regulation of membrane and protein sorting along endo-lysosomal pathways. Loss-of-function mutations in TRPML1 cause the neurodegenerative lysosomal storage disorder, mucolipidosis type IV (MLIV), whereas a gain-of-function mutation in TRPML3 is principally implicated in the hearing-impaired and abnormally pigmented varitint-waddler mouse. Currently, TRPML2 is not implicated in any pathological disorder, but we have recently shown that it is a functional cation channel that physically interacts with TRPML1 and TRPML3 to potentially regulate lysosomal integrity. Here, we show that mutant TRPMLs heteromultimerize with other mutant and wild-type TRPMLs to regulate cell viability and starvation-induced autophagy, a process that mediates macromolecular and organellar turnover under cell starvation conditions. Heteromultimerization of dominant-negative TRPMLs with constitutively active TRPMLs rescues cells from the cytotoxic effects of TRPML constitutive activity. Moreover, dominant-negative TRPML1 channels, including a mutant channel directly implicated in MLIV pathology, also inhibit starvation-induced autophagy by interacting with and affecting native TRPML channel function. Collectively, our results indicate that heteromultimerization of TRPML channels plays a role in various TRPML-regulated mechanisms.


Assuntos
Autofagia , Canais de Cátion TRPM/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Sobrevivência Celular , Dimerização , Células HeLa , Humanos , Ligação Proteica , Canais de Cátion TRPM/química , Canais de Cátion TRPM/genética , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética
14.
STAR Protoc ; 3(1): 101224, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35284836

RESUMO

This protocol aims to measure ion dynamics in nociceptive terminal endings in intact mice in vivo. We describe viral injection of GCaMP6s + RFP into trigeminal ganglia (TG) of mice, followed by calcium imaging of corneal nociceptive terminals that express GCaMP6s and RFP. This fast and high-resolution optical recording technique enables studying a nociceptive terminal's functional molecular network in physiological and pathological conditions. This platform can be applied to studying the physiology of terminals of other neurons. For complete details on the use and execution of this protocol, please refer to Goldstein et al. (2019).


Assuntos
Neurônios , Nociceptividade , Animais , Camundongos , Gânglio Trigeminal/diagnóstico por imagem
15.
J Clin Invest ; 132(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35579957

RESUMO

The encoding of noxious stimuli into action potential firing is largely mediated by nociceptive free nerve endings. Tissue inflammation, by changing the intrinsic properties of the nociceptive endings, leads to nociceptive hyperexcitability and thus to the development of inflammatory pain. Here, we showed that tissue inflammation-induced activation of the mammalian target of rapamycin complex 2 (mTORC2) triggers changes in the architecture of nociceptive terminals and leads to inflammatory pain. Pharmacological activation of mTORC2 induced elongation and branching of nociceptor peripheral endings and caused long-lasting pain hypersensitivity. Conversely, nociceptor-specific deletion of the mTORC2 regulatory protein rapamycin-insensitive companion of mTOR (Rictor) prevented inflammation-induced elongation and branching of cutaneous nociceptive fibers and attenuated inflammatory pain hypersensitivity. Computational modeling demonstrated that mTORC2-mediated structural changes in the nociceptive terminal tree are sufficient to increase the excitability of nociceptors. Targeting mTORC2 using a single injection of antisense oligonucleotide against Rictor provided long-lasting alleviation of inflammatory pain hypersensitivity. Collectively, we showed that tissue inflammation-induced activation of mTORC2 causes structural plasticity of nociceptive free nerve endings in the epidermis and inflammatory hyperalgesia, representing a therapeutic target for inflammatory pain.


Assuntos
Dor Crônica , Nociceptores , Humanos , Hiperalgesia/genética , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Nociceptores/fisiologia , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sirolimo
16.
J Biol Chem ; 285(4): 2771-82, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19940139

RESUMO

The mucolipin (TRPML) ion channel proteins represent a distinct subfamily of channel proteins within the transient receptor potential (TRP) superfamily of cation channels. Mucolipin 1, 2, and 3 (TRPML1, -2, and -3, respectively) are channel proteins that share high sequence homology with each other and homology in the transmembrane domain with other TRPs. Mutations in the TRPML1 protein are implicated in mucolipidosis type IV, whereas mutations in TRPML3 are found in the varitint-waddler mouse. The properties of the wild type TRPML2 channel are not well known. Here we show functional expression of the wild type human TRPML2 channel (h-TRPML2). The channel is functional at the plasma membrane and characterized by a significant inward rectification similar to other constitutively active TRPML mutant isoforms. The h-TRPML2 channel displays nonselective cation permeability, which is Ca(2+)-permeable and inhibited by low extracytosolic pH but not Ca(2+) regulated. In addition, constitutively active h-TRPML2 leads to cell death by causing Ca(2+) overload. Furthermore, we demonstrate by functional mutation analysis that h-TRPML2 shares similar characteristics and structural similarities with other TRPML channels that regulate the channel in a similar manner. Hence, in addition to overall structure, all three TRPML channels also share common modes of regulation.


Assuntos
Apoptose/fisiologia , Cálcio/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Cátions/metabolismo , Membrana Celular/metabolismo , Drosophila , Expressão Gênica/fisiologia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Rim/citologia , Potenciais da Membrana/fisiologia , Camundongos , Técnicas de Patch-Clamp , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Mutação Puntual , Transfecção
17.
J Neurosci ; 29(8): 2371-83, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19244513

RESUMO

Open channel block is a process in which ions bound to the inside of a channel pore block the flow of ions through that channel. Repulsion of the blocking ions by depolarization is a known mechanism of open channel block removal. For the NMDA channel, this mechanism is necessary for channel activation and is involved in neuronal plasticity. Several types of transient receptor potential (TRP) channels, including the Drosophila TRP and TRP-like (TRPL) channels, also exhibit open channel block. Therefore, removal of open channel block is necessary for the production of the physiological response to light. Because there is no membrane depolarization before the light response develops, it is not clear how the open channel block is removed, an essential step for the production of a robust light response under physiological conditions. Here we present a novel mechanism to alleviate open channel block in the absence of depolarization by membrane lipid modulations. The results of this study show open channel block removal by membrane lipid modulations in both TRPL and NMDA channels of the photoreceptor cells and CA1 hippocampal neurons, respectively. Removal of open channel block is characterized by an increase in the passage-rate of the blocking cations through the channel pore. We propose that the profound effect of membrane lipid modulations on open channel block alleviation, allows the productions of a robust current in response to light in the absence of depolarization.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Lipídeos de Membrana/farmacologia , Receptores de N-Metil-D-Aspartato/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Animais Geneticamente Modificados , Biofísica , Cálcio/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Estimulação Elétrica , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Técnicas In Vitro , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Luz , Ácido Linoleico/farmacologia , Magnésio/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Mutação/genética , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Células Fotorreceptoras de Invertebrados/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/genética , Canais de Potencial de Receptor Transitório/genética
18.
Cells ; 9(4)2020 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325693

RESUMO

An injury to peripheral nerves leads to skin denervation, which often is followed by increased pain sensitivity of the denervated areas and the development of neuropathic pain. Changes in innervation patterns during the reinnervation process of the denervated skin could contribute to the development of neuropathic pain. Here, we examined the changes in the innervation pattern during reinnervation and correlated them with the symptoms of neuropathic pain. Using a multispectral labeling technique-PainBow, which we developed, we characterized dorsal root ganglion (DRG) neurons innervating distinct areas of the rats' paw. We then used spared nerve injury, causing partial denervation of the paw, and examined the changes in innervation patterns of the denervated areas during the development of allodynia and hyperalgesia. We found that, differently from normal conditions, during the development of neuropathic pain, these areas were mainly innervated by large, non-nociceptive neurons. Moreover, we found that the development of neuropathic pain is correlated with an overall decrease in the number of DRG neurons innervating these areas. Importantly, treatment with ouabain facilitated reinnervation and alleviated neuropathic pain. Our results suggest that local changes in peripheral innervation following denervation contribute to neuropathic pain development. The reversal of these changes decreases neuropathic pain.


Assuntos
Gânglios Espinais/lesões , Hiperalgesia/fisiopatologia , Neuralgia/fisiopatologia , Pele/patologia , Animais , Comportamento Animal/fisiologia , Gânglios Espinais/fisiopatologia , Hiperalgesia/complicações , Masculino , Neuralgia/etiologia , Neurogênese/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Ratos Sprague-Dawley , Pele/inervação
19.
Pain ; 160(6): 1281-1296, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30933959

RESUMO

Endogenous inflammatory mediators contribute to the pathogenesis of pain by acting on nociceptors, specialized sensory neurons that detect noxious stimuli. Here, we describe a new factor mediating inflammatory pain. We show that platelet-derived growth factor (PDGF)-BB applied in vitro causes repetitive firing of dissociated nociceptor-like rat dorsal root ganglion neurons and decreased their threshold for action potential generation. Injection of PDGF-BB into the paw produced nocifensive behavior in rats and led to thermal and mechanical pain hypersensitivity. We further detailed the biophysical mechanisms of these PDGF-BB effects and show that PDGF receptor-induced inhibition of nociceptive M-current underlies PDGF-BB-mediated nociceptive hyperexcitability. Moreover, in vivo sequestration of PDGF or inhibition of the PDGF receptor attenuates acute formalin-induced inflammatory pain. Our discovery of a new pain-facilitating proinflammatory mediator, which by inhibiting M-current activates nociceptive neurons and thus contributes to inflammatory pain, improves our understanding of inflammatory pain pathophysiology and may have important clinical implications for pain treatment.


Assuntos
Inflamação/tratamento farmacológico , Nociceptores/fisiologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Células Receptoras Sensoriais/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Nociceptores/efeitos dos fármacos , Dor/metabolismo , Dor/fisiopatologia , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos
20.
Neuron ; 102(4): 801-812.e5, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30926280

RESUMO

Nociceptive terminals possess the elements for detecting, transmitting, and modulating noxious signals, thus being pivotal for pain sensation. Despite this, a functional description of the transduction process by the terminals, in physiological conditions, has not been fully achieved. Here, we studied how nociceptive terminals in vivo convert noxious stimuli into propagating signals. By monitoring noxious-stimulus-induced Ca2+ dynamics from mouse corneal terminals, we found that initiation of Na+ channel (Nav)-dependent propagating signals takes place away from the terminal and that the starting point for Nav-mediated propagation depends on Nav functional availability. Acute treatment with the proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß) resulted in a shift of the location of Nav involvement toward the terminal, thus increasing nociceptive excitability. Moreover, a shift of Nav involvement toward the terminal occurs in corneal hyperalgesia resulting from acute photokeratitis. This dynamic change in the location of Nav-mediated propagation initiation could underlie pathological pain hypersensitivity.


Assuntos
Potenciais de Ação , Córnea/inervação , Hiperalgesia/metabolismo , Nociceptores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Canais de Sódio/metabolismo , Animais , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Lesões da Córnea , Interleucina-1beta/farmacologia , Camundongos , Plasticidade Neuronal , Terminações Pré-Sinápticas/efeitos dos fármacos , Canais de Sódio/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa