Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8008): 551-557, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38632481

RESUMO

Global projections of macroeconomic climate-change damages typically consider impacts from average annual and national temperatures over long time horizons1-6. Here we use recent empirical findings from more than 1,600 regions worldwide over the past 40 years to project sub-national damages from temperature and precipitation, including daily variability and extremes7,8. Using an empirical approach that provides a robust lower bound on the persistence of impacts on economic growth, we find that the world economy is committed to an income reduction of 19% within the next 26 years independent of future emission choices (relative to a baseline without climate impacts, likely range of 11-29% accounting for physical climate and empirical uncertainty). These damages already outweigh the mitigation costs required to limit global warming to 2 °C by sixfold over this near-term time frame and thereafter diverge strongly dependent on emission choices. Committed damages arise predominantly through changes in average temperature, but accounting for further climatic components raises estimates by approximately 50% and leads to stronger regional heterogeneity. Committed losses are projected for all regions except those at very high latitudes, at which reductions in temperature variability bring benefits. The largest losses are committed at lower latitudes in regions with lower cumulative historical emissions and lower present-day income.

2.
Nature ; 601(7892): 223-227, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022593

RESUMO

Macro-economic assessments of climate impacts lack an analysis of the distribution of daily rainfall, which can resolve both complex societal impact channels and anthropogenically forced changes1-6. Here, using a global panel of subnational economic output for 1,554 regions worldwide over the past 40 years, we show that economic growth rates are reduced by increases in the number of wet days and in extreme daily rainfall, in addition to responding nonlinearly to the total annual and to the standardized monthly deviations of rainfall. Furthermore, high-income nations and the services and manufacturing sectors are most strongly hindered by both measures of daily rainfall, complementing previous work that emphasized the beneficial effects of additional total annual rainfall in low-income, agriculturally dependent economies4,7. By assessing the distribution of rainfall at multiple timescales and the effects on different sectors, we uncover channels through which climatic conditions can affect the economy. These results suggest that anthropogenic intensification of daily rainfall extremes8-10 will have negative global economic consequences that require further assessment by those who wish to evaluate the costs of anthropogenic climate change.


Assuntos
Mudança Climática
3.
Nature ; 585(7826): 538-544, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32968257

RESUMO

More than half of Earth's freshwater resources are held by the Antarctic Ice Sheet, which thus represents by far the largest potential source for global sea-level rise under future warming conditions1. Its long-term stability determines the fate of our coastal cities and cultural heritage. Feedbacks between ice, atmosphere, ocean, and the solid Earth give rise to potential nonlinearities in its response to temperature changes. So far, we are lacking a comprehensive stability analysis of the Antarctic Ice Sheet for different amounts of global warming. Here we show that the Antarctic Ice Sheet exhibits a multitude of temperature thresholds beyond which ice loss is irreversible. Consistent with palaeodata2 we find, using the Parallel Ice Sheet Model3-5, that at global warming levels around 2 degrees Celsius above pre-industrial levels, West Antarctica is committed to long-term partial collapse owing to the marine ice-sheet instability. Between 6 and 9 degrees of warming above pre-industrial levels, the loss of more than 70 per cent of the present-day ice volume is triggered, mainly caused by the surface elevation feedback. At more than 10 degrees of warming above pre-industrial levels, Antarctica is committed to become virtually ice-free. The ice sheet's temperature sensitivity is 1.3 metres of sea-level equivalent per degree of warming up to 2 degrees above pre-industrial levels, almost doubling to 2.4 metres per degree of warming between 2 and 6 degrees and increasing to about 10 metres per degree of warming between 6 and 9 degrees. Each of these thresholds gives rise to hysteresis behaviour: that is, the currently observed ice-sheet configuration is not regained even if temperatures are reversed to present-day levels. In particular, the West Antarctic Ice Sheet does not regrow to its modern extent until temperatures are at least one degree Celsius lower than pre-industrial levels. Our results show that if the Paris Agreement is not met, Antarctica's long-term sea-level contribution will dramatically increase and exceed that of all other sources.

5.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34341105

RESUMO

Changes in mean climatic conditions will affect natural and societal systems profoundly under continued anthropogenic global warming. Changes in the high-frequency variability of temperature exert additional pressures, yet the effect of greenhouse forcing thereon has not been fully assessed or identified in observational data. Here, we show that the intramonthly variability of daily surface temperature changes with distinct global patterns as greenhouse gas concentrations rise. In both reanalyses of historical observations and state-of-the-art projections, variability increases at low to mid latitudes and decreases at northern mid to high latitudes with enhanced greenhouse forcing. These latitudinally polarized daily variability changes are identified from internal climate variability using a recently developed signal-to-noise-maximizing pattern-filtering technique. Analysis of a multimodel ensemble from the Coupled Model Intercomparison Project Phase 6 shows that these changes are attributable to enhanced greenhouse forcing. By the end of the century under a business-as-usual emissions scenario, daily temperature variability would continue to increase by up to a further 100% at low latitudes and decrease by 40% at northern high latitudes. Alternative scenarios demonstrate that these changes would be limited by mitigation of greenhouse gases. Moreover, global changes in daily variability exhibit strong covariation with warming across climate models, suggesting that the equilibrium climate sensitivity will also play a role in determining the extent of future variability changes. This global response of the high-frequency climate system to enhanced greenhouse forcing is likely to have strong and unequal effects on societies, economies, and ecosystems if mitigation and protection measures are not taken.


Assuntos
Modelos Climáticos , Efeito Estufa , Aquecimento Global , Gases de Efeito Estufa , Temperatura
6.
Proc Natl Acad Sci U S A ; 114(38): E7910-E7918, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28847939

RESUMO

There is growing empirical evidence that anthropogenic climate change will substantially affect the electric sector. Impacts will stem both from the supply side-through the mitigation of greenhouse gases-and from the demand side-through adaptive responses to a changing environment. Here we provide evidence of a polarization of both peak load and overall electricity consumption under future warming for the world's third-largest electricity market-the 35 countries of Europe. We statistically estimate country-level dose-response functions between daily peak/total electricity load and ambient temperature for the period 2006-2012. After removing the impact of nontemperature confounders and normalizing the residual load data for each country, we estimate a common dose-response function, which we use to compute national electricity loads for temperatures that lie outside each country's currently observed temperature range. To this end, we impose end-of-century climate on today's European economies following three different greenhouse-gas concentration trajectories, ranging from ambitious climate-change mitigation-in line with the Paris agreement-to unabated climate change. We find significant increases in average daily peak load and overall electricity consumption in southern and western Europe (∼3 to ∼7% for Portugal and Spain) and significant decreases in northern Europe (∼-6 to ∼-2% for Sweden and Norway). While the projected effect on European total consumption is nearly zero, the significant polarization and seasonal shifts in peak demand and consumption have important ramifications for the location of costly peak-generating capacity, transmission infrastructure, and the design of energy-efficiency policy and storage capacity.

7.
Proc Natl Acad Sci U S A ; 113(10): 2597-602, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26903648

RESUMO

Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28-56 cm, 37-77 cm, and 57-131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The "constrained extrapolation" approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections.

8.
Proc Natl Acad Sci U S A ; 112(46): 14191-6, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578762

RESUMO

The future evolution of the Antarctic Ice Sheet represents the largest uncertainty in sea-level projections of this and upcoming centuries. Recently, satellite observations and high-resolution simulations have suggested the initiation of an ice-sheet instability in the Amundsen Sea sector of West Antarctica, caused by the last decades' enhanced basal ice-shelf melting. Whether this localized destabilization will yield a full discharge of marine ice from West Antarctica, associated with a global sea-level rise of more than 3 m, or whether the ice loss is limited by ice dynamics and topographic features, is unclear. Here we show that in the Parallel Ice Sheet Model, a local destabilization causes a complete disintegration of the marine ice in West Antarctica. In our simulations, at 5-km horizontal resolution, the region disequilibrates after 60 y of currently observed melt rates. Thereafter, the marine ice-sheet instability fully unfolds and is not halted by topographic features. In fact, the ice loss in Amundsen Sea sector shifts the catchment's ice divide toward the Filchner-Ronne and Ross ice shelves, which initiates grounding-line retreat there. Our simulations suggest that if a destabilization of Amundsen Sea sector has indeed been initiated, Antarctica will irrevocably contribute at least 3 m to global sea-level rise during the coming centuries to millennia.

9.
Proc Natl Acad Sci U S A ; 112(44): 13508-13, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26460051

RESUMO

Anthropogenic carbon emissions lock in long-term sea-level rise that greatly exceeds projections for this century, posing profound challenges for coastal development and cultural legacies. Analysis based on previously published relationships linking emissions to warming and warming to rise indicates that unabated carbon emissions up to the year 2100 would commit an eventual global sea-level rise of 4.3-9.9 m. Based on detailed topographic and population data, local high tide lines, and regional long-term sea-level commitment for different carbon emissions and ice sheet stability scenarios, we compute the current population living on endangered land at municipal, state, and national levels within the United States. For unabated climate change, we find that land that is home to more than 20 million people is implicated and is widely distributed among different states and coasts. The total area includes 1,185-1,825 municipalities where land that is home to more than half of the current population would be affected, among them at least 21 cities exceeding 100,000 residents. Under aggressive carbon cuts, more than half of these municipalities would avoid this commitment if the West Antarctic Ice Sheet remains stable. Similarly, more than half of the US population-weighted area under threat could be spared. We provide lists of implicated cities and state populations for different emissions scenarios and with and without a certain collapse of the West Antarctic Ice Sheet. Although past anthropogenic emissions already have caused sea-level commitment that will force coastal cities to adapt, future emissions will determine which areas we can continue to occupy or may have to abandon.


Assuntos
Carbono/metabolismo , Cidades , Mudança Climática , Clima , Regiões Antárticas , Monitorização de Parâmetros Ecológicos/métodos , Monitorização de Parâmetros Ecológicos/tendências , Ecossistema , Previsões , Geografia , Aquecimento Global , Humanos , Camada de Gelo , Modelos Teóricos , Oceanos e Mares , Água do Mar , Estados Unidos
10.
Proc Natl Acad Sci U S A ; 111(9): 3292-7, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24596428

RESUMO

Coastal flood damage and adaptation costs under 21st century sea-level rise are assessed on a global scale taking into account a wide range of uncertainties in continental topography data, population data, protection strategies, socioeconomic development and sea-level rise. Uncertainty in global mean and regional sea level was derived from four different climate models from the Coupled Model Intercomparison Project Phase 5, each combined with three land-ice scenarios based on the published range of contributions from ice sheets and glaciers. Without adaptation, 0.2-4.6% of global population is expected to be flooded annually in 2100 under 25-123 cm of global mean sea-level rise, with expected annual losses of 0.3-9.3% of global gross domestic product. Damages of this magnitude are very unlikely to be tolerated by society and adaptation will be widespread. The global costs of protecting the coast with dikes are significant with annual investment and maintenance costs of US$ 12-71 billion in 2100, but much smaller than the global cost of avoided damages even without accounting for indirect costs of damage to regional production supply. Flood damages by the end of this century are much more sensitive to the applied protection strategy than to variations in climate and socioeconomic scenarios as well as in physical data sources (topography and climate model). Our results emphasize the central role of long-term coastal adaptation strategies. These should also take into account that protecting large parts of the developed coast increases the risk of catastrophic consequences in the case of defense failure.


Assuntos
Mudança Climática , Inundações/economia , Modelos Econômicos , Dinâmica Populacional , Simulação por Computador , Inundações/estatística & dados numéricos , Previsões , Geografia , Humanos , Oceanos e Mares , Medição de Risco , Fatores Socioeconômicos , Incerteza
11.
Proc Natl Acad Sci U S A ; 110(34): 13745-50, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23858443

RESUMO

Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C(-1) and 1.2 m °C(-1) of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C(-1) within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales.


Assuntos
Aquecimento Global , Camada de Gelo , Modelos Teóricos , Regiões Antárticas , Simulação por Computador , Groenlândia , Oceanos e Mares , Água do Mar/química , Temperatura
12.
Nature ; 506(7486): 27-9, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24499903
16.
Proc Natl Acad Sci U S A ; 106(49): 20572-7, 2009 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19858472

RESUMO

Monsoon systems influence the livelihood of hundreds of millions of people. During the Holocene and last glacial period, rainfall in India and China has undergone strong and abrupt changes. Though details of monsoon circulations are complicated, observations reveal a defining moisture-advection feedback that dominates the seasonal heat balance and might act as an internal amplifier, leading to abrupt changes in response to relatively weak external perturbations. Here we present a minimal conceptual model capturing this positive feedback. The basic equations, motivated by observed relations, yield a threshold behavior, robust with respect to addition of other physical processes. Below this threshold in net radiative influx, R(c), no conventional monsoon can develop; above R(c), two stable regimes exist. We identify a nondimensional parameter l that defines the threshold and makes monsoon systems comparable with respect to the character of their abrupt transition. This dynamic similitude may be helpful in understanding past and future variations in monsoon circulation. Within the restrictions of the model, we compute R(c) for current monsoon systems in India, China, the Bay of Bengal, West Africa, North America, and Australia, where moisture advection is the main driver of the circulation.

17.
Lancet Planet Health ; 6(9): e714-e725, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36087602

RESUMO

BACKGROUND: A link between weather and aggression in the offline world has been established across a variety of societal settings. Simultaneously, the rapid digitalisation of nearly every aspect of everyday life has led to a high frequency of interpersonal conflicts online. Hate speech online has become a prevalent problem that has been shown to aggravate mental health conditions, especially among young people and marginalised groups. We examine the effect of temperature on the occurrence of hate speech on the social media platform Twitter and interpret the results in the context of the interlinkage between climate change, human behaviour, and mental health. METHODS: In this quantitative empirical study, we used a supervised machine learning approach to identify hate speech in a dataset containing around 4 billion geolocated tweets from 773 cities across the USA between May 1, 2014 and May 1, 2020. We statistically evaluated the changes in daily hate tweets against changes in local temperature, isolating the temperature influence from confounding factors using binned panel-regression models. FINDINGS: The prevalence of hate tweets was lowest at moderate temperatures (12 to 21°C) and marked increases in the number of hate tweets were observed at hotter and colder temperatures, reaching up to 12·5% (95% CI 8·0-16·5) for cold temperature extremes (-6 to -3°C) and up to 22·0% (95% CI 20·5-23·5) for hot temperature extremes (42 to 45°C). Outside of the moderate temperature range, the hate tweets also increased as a proportion of total tweeting activity. The quasi-quadratic shape of the temperature-hate tweet curve was robust across varying climate zones, income quartiles, religious and political beliefs, and both city-level and state-level aggregations. However, temperature ranges with the lowest prevalence of hate tweets were centred around the local temperature mean and the magnitude of the increases in hate tweets for hot and cold temperatures varied across the climate zones. INTERPRETATION: Our results highlight hate speech online as a potential channel through which temperature alters interpersonal conflict and societal aggression. We provide empirical evidence that hot and cold temperatures can aggravate aggressive tendencies online. The prevalence of the results across climatic and socioeconomic subgroups points to limitations in the ability of humans to adapt to temperature extremes. FUNDING: Volkswagen Foundation.


Assuntos
Ódio , Mídias Sociais , Adolescente , Humanos , Fala , Temperatura , Tempo (Meteorologia)
18.
Phys Rev E ; 106(6-1): 064138, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36671094

RESUMO

The radiation model is a parameter-free model of human mobility that has been applied primarily for short-distance moves, such as commuting. When applied to migration, it underestimates the number of long-range moves, such as between different US states. Here we show that it additionally suffers from a conceptual inconsistency that can have substantial numerical effects on long-distance moves. We propose a modification of the radiation model that introduces a dependence on the angle between any two alternative potential destinations, accounting for the possibility that migrants may have preferences about the approximate direction of their move. We demonstrate that this modification mitigates the conceptual inconsistency and improves the model fit to observational migration data, without introducing any fitting parameters.

19.
Nat Commun ; 12(1): 3245, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059680

RESUMO

Increasing greenhouse gas emissions are likely to impact not only natural systems but economies worldwide. If these impacts alter future economic development, the financial losses will be significantly higher than the mere direct damages. So far, potentially aggravating investment responses were considered negligible. Here we consistently incorporate an empirically derived temperature-growth relation into the simple integrated assessment model DICE. In this framework we show that, if in the next eight decades varying temperatures impact economic growth as has been observed in the past three decades, income is reduced by ~ 20% compared to an economy unaffected by climate change. Hereof ~ 40% are losses due to growth effects of which ~ 50% result from reduced incentive to invest. This additional income loss arises from a reduced incentive for future investment in anticipation of a reduced return and not from an explicit climate protection policy. Under economically optimal climate-change mitigation, however, optimal investment would only be reduced marginally as mitigation efforts keep returns high.

20.
Sci Rep ; 11(1): 8571, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883574

RESUMO

To design incentives towards achieving climate mitigation targets, it is important to understand the mechanisms that affect individual climate decisions such as solar panel installation. It has been shown that peer effects are important in determining the uptake and spread of household photovoltaic installations. Due to coarse geographical data, it remains unclear whether this effect is generated through geographical proximity or within groups exhibiting similar characteristics. Here we show that geographical proximity is the most important predictor of solar panel implementation, and that peer effects diminish with distance. Using satellite imagery, we build a unique geo-located dataset for the city of Fresno to specify the importance of small distances. Employing machine learning techniques, we find the density of solar panels within the shortest measured radius of an address is the most important factor in determining the likelihood of that address having a solar panel. The importance of geographical proximity decreases with distance following an exponential curve with a decay radius of 210 meters. The dependence is slightly more pronounced in low-income groups. These findings support the model of distance-related social diffusion, and suggest priority should be given to seeding panels in areas where few exist.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa