Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Chem Soc Rev ; 53(13): 6779-6829, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38828885

RESUMO

This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.


Assuntos
Vesículas Extracelulares , Corantes Fluorescentes , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Corantes Fluorescentes/química , Traçadores Radioativos , Imageamento por Ressonância Magnética/métodos , Animais , Meios de Contraste/química , Meios de Contraste/metabolismo
2.
J Biol Inorg Chem ; 28(1): 43-55, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36469143

RESUMO

Imbalances in metal homeostasis have been implicated in the progression and drug response of cancer cells. Understanding these changes will enable identification of new treatment regimes and precision medicine approaches to cancer treatment. In particular, there has been considerable interest in the interplay between copper homeostasis and response to platinum-based chemotherapeutic agents. Here, we have studied differences in the Cu uptake and distributions in the ovarian cancer cell line, A2780, and its cisplatin resistant form, A2780.CisR, by measuring total Cu content and the bioavailable Cu pool. Atomic absorption spectroscopy (AAS) revealed a lower total Cu uptake in A2780.CisR compared to A2780 cells. Conversely, live-cell confocal microscopy studies with the ratiometric Cu(I)-sensitive fluorescent dye, InCCu1, revealed higher relative cellular content of labile Cu in A2780.CisR cells compared with A2780 cells. These results demonstrate that Cu trafficking, homeostasis and speciation are different in the Pt-sensitive and resistant cells and may be associated with the predominance of different phenotypes for A2780 (epithelial) and A2780.CisR (mesenchymal) cells.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Antineoplásicos/farmacologia , Cobre/farmacologia , Corantes Fluorescentes , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Compostos Organoplatínicos/metabolismo , Cisplatino/farmacologia
3.
Chemistry ; 29(68): e202302271, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37581946

RESUMO

Two new series of complexes with pyridine-containing Schiff bases, [VV O(SALIEP)L] and [VV O(Cl-SALIEP)L] (SALIEP=N-(salicylideneaminato)-2-(2-aminoethylpyridine; Cl-SALIEP=N-(5-chlorosalicylideneaminato)-2-(2-aminoethyl)pyridine, L=catecholato(2-) ligand) have been synthesized. Characterization by 1 H and 51 V NMR and UV-Vis spectroscopies confirmed that: 1) most complexes form two major geometric isomers in solution, and [VV O(SALIEP)(DTB)] (DTB=3,5-di-tert-butylcatecholato(2-)) forms two isomers that equilibrate in solution; and 2) tert-butyl substituents were necessary to stabilize the reduced VIV species (EPR spectroscopy and cyclic voltammetry). The pyridine moiety within the Schiff base ligands significantly changed their chemical properties with unsubstituted catecholate ligands compared with the parent HSHED (N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine) Schiff base complexes. Immediate reduction to VIV occurred for the unsubstituted-catecholato VV complexes on dissolution in DMSO. By contrast, the pyridine moiety within the Schiff base significantly improved the hydrolytic stability of [VV O(SALIEP)(DTB)] compared with [VV O(HSHED)(DTB)]. [VV O(SALIEP)(DTB)] had moderate stability in cell culture media. There was significant cellular uptake of the intact complex by T98G (human glioblastoma) cells and very good anti-proliferative activity (IC50 6.7±0.9 µM, 72 h), which was approximately five times higher than for the non-cancerous human cell line, HFF-1 (IC50 34±10 µM). This made [VV O(SALIEP)(DTB)] a potential drug candidate for the treatment of advanced gliomas by intracranial injection.


Assuntos
Antineoplásicos , Complexos de Coordenação , Glioblastoma , Compostos Organometálicos , Humanos , Vanádio/química , Bases de Schiff/química , Compostos Organometálicos/química , Glioblastoma/tratamento farmacológico , Antineoplásicos/química , Piridinas/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Ligantes , Complexos de Coordenação/farmacologia
4.
Chemistry ; 29(54): e202203323, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37385951

RESUMO

As shown by IncuCyte Zoom imaging proliferation assays, invasive triple-negative human breast MDA-MB-231 cancer cells treated with sub-toxic doses (5.0-20 µM, 72 h) of [GaQ3 ] (Q=8-hydroxyquinolinato) caused profound morphological changes and inhibition of cell migration, which were likely due to terminal cell differentiation or similar phenotypical change. This is the first demonstration of potential use of a metal complex in differentiation anti-cancer therapy. Additionally, a trace amount of Cu(II) (0.20 µM) added to the medium dramatically increased [GaQ3 ] cytotoxicity (IC50 ~2 µM, 72 h) due to its partial dissociation and the action of the HQ ligand as a Cu(II) ionophore, as shown with electrospray mass spectrometry and fluorescence spectroscopy assays in the medium. Hence, cytotoxicity of [GaQ3 ] is strongly linked to ligand binding of essential metal ions in the medium, for example, Cu(II). Appropriate delivery mechanisms of such complexes and their ligands could enable a powerful new triple therapeutic approach for cancer chemotherapy, including cytotoxicity against primary tumour, arrest of metastases, and activation of innate and adaptive immune responses.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Cobre/química , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química , Complexos de Coordenação/química , Metais/farmacologia , Proliferação de Células , Linhagem Celular Tumoral
5.
Inorg Chem ; 62(43): 17804-17817, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37858311

RESUMO

Limited stability of most transition-metal complexes in biological media has hampered their medicinal applications but also created a potential for novel cancer treatments, such as intratumoral injections of cytotoxic but short-lived anticancer drugs. Two related V(V) complexes, [VO(Hshed)(dtb)] (1) and [VO(Hshed)(cat)] (2), where H2shed = N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine, H2dtb = 3,5-di-tert-butylcatechol, and H2cat = 1,2-catechol, decomposed within minutes in cell culture medium at 310 K (t1/2 = 43 and 9 s for 1 and 2, respectively). Despite this, both complexes showed high antiproliferative activities in triple-negative human breast cancer (MDA-MB-231) cells, but the mechanisms of their activities were radically different. Complex 1 formed noncovalent adducts with human serum albumin, rapidly entered cells via passive diffusion, and was nearly as active in a short-term treatment (IC50 = 1.9 ± 0.2 µM at 30 min) compared with a long-term treatment (IC50 = 1.3 ± 0.2 µM at 72 h). The activity of 1 decreased about 20-fold after its decomposition in cell culture medium for 30 min at 310 K. Complex 2 showed similar activities (IC50 ≈ 12 µM at 72 h) in both fresh and decomposed solutions and was inactive in a short-term treatment. The activity of 2 was mainly due to the reactions among V(V) decomposition products, free catechol, and O2 in cell culture medium. As a result, the activity of 1 was less sensitive than that of 2 to the effects of hypoxic conditions that are characteristic of solid tumors and to the presence of apo-transferrin that acts as a scavenger of V(V/IV) decomposition products in blood serum. In summary, complex 1, but not 2, is a suitable candidate for further development as an anticancer drug delivered via intratumoral injections. These results demonstrate the importance of fine-tuning the ligand properties for the optimization of biological activities of metal complexes.


Assuntos
Complexos de Coordenação , Compostos Organometálicos , Humanos , Complexos de Coordenação/farmacologia , Vanádio/farmacologia , Compostos Organometálicos/farmacologia , Transferrina , Albuminas , Hipóxia , Catecóis/farmacologia
6.
Inorg Chem ; 61(51): 20757-20773, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36519680

RESUMO

A hydrophobic Schiff base catecholate vanadium complex was recently discovered to have anticancer properties superior to cisplatin and suited for intratumoral administration. This [VO(HSHED)(DTB)] complex, where HSHED is N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine and the non-innocent catecholato ligand is di-t-butylcatecholato (DTB), has higher stability compared to simpler catecholato complexes. Three new chloro-substituted Schiff base complexes of vanadium(V) with substituted catecholates as co-ligands were synthesized for comparison with their non-chlorinated Schiff base vanadium complexes, and their properties were characterized. Up to four geometric isomers for each complex were identified in organic solvents using 51V and 1H NMR spectroscopies. Spectroscopy was used to characterize the structure of the major isomer in solution and to demonstrate that the observed isomers are exchanged in solution. All three chloro-substituted Schiff base vanadium(V) complexes with substituted catecholates were also characterized by UV-vis spectroscopy, mass spectrometry, and electrochemistry. Upon testing in human glioblastoma multiforme (T98g) cells as an in vitro model of brain gliomas, the most sterically hindered, hydrophobic, and stable compound [t1/2 (298 K) = 15 min in cell medium] was better than the two other complexes (IC50 = 4.1 ± 0.5 µM DTB, 34 ± 7 µM 3-MeCat, and 19 ± 2 µM Cat). Furthermore, upon aging, the complexes formed less toxic decomposition products (IC50 = 9 ± 1 µM DTB, 18 ± 3 µM 3-MeCat, and 8.1 ± 0.6 µM Cat). The vanadium complexes with the chloro-substituted Schiff base were more hydrophobic, more hydrolytically stable, more easily reduced compared to their corresponding parent counterparts, and the most sterically hindered complex of this series is only the second non-innocent vanadium Schiff base complex with a potent in vitro anticancer activity that is an order of magnitude more potent than cisplatin under the same conditions.


Assuntos
Complexos de Coordenação , Vanádio , Humanos , Vanádio/farmacologia , Vanádio/química , Cisplatino , Bases de Schiff/farmacologia , Bases de Schiff/química , Água , Espectroscopia de Ressonância Magnética , Complexos de Coordenação/farmacologia , Ligantes
7.
Chembiochem ; 21(8): 1188-1200, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31701616

RESUMO

RuII -arene complexes provide a versatile scaffold for novel anticancer drugs. Seven new RuII -arene-thiocarboxylato dimers were synthesized and characterized. Three of the complexes (2 a, b and 5) showed promising antiproliferative activities in MDA-MB-231 (human invasive breast cancer) cells, and were further tested in a panel of fifteen cancerous and noncancerous cell lines. Complex 5 showed moderate but remarkably selective activity in MDA-MB-231 cells (IC50 =39±4 µm Ru). Real-time proliferation studies showed that 5 induced apoptosis in MDA-MB-231 cells but had no effect in A549 (human lung cancer, epithelial) cells. By contrast, 2 a and b showed moderate antiproliferative activity, but no apoptosis, in either cell line. Selective cytotoxicity of 5 in aggressive, mesenchymal-like MDA-MB-231 cells over many common epithelial cancer cell lines (including noninvasive breast cancer MCF-7) makes it an attractive lead compound for the development of specifically antimetastatic Ru complexes with low systemic toxicity.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/patologia , Ácidos Carboxílicos/química , Complexos de Coordenação/farmacologia , Rutênio/química , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/química , Células Tumorais Cultivadas
8.
Inorg Chem ; 59(22): 16143-16153, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32578416

RESUMO

The role of vanadium binding to transferrin (Tf) in the biological activities of vanadium-based drugs is a matter of considerable debate. In order to determine whether V(V) and/or V(IV) binding to Tf (in apo, monoferric(III), and diferric(III) forms) enhances or inhibits biological activities, cellular V uptake and in vitro antiproliferative activity were examined in the presence and absence of different forms of Tf and other biomolecules under normoxic conditions. These data were combined with studies on V-Tf binding in cell culture medium and its role in Tf interactions with transferrin receptor 1 (TfR1), using the biolayer interferometry (BLI) model of the Tf cycle that was developed in our group. The results showed that both V(V) and V(IV) oxidation states efficiently bind to vacant Fe(III) binding sites of Tf even in the presence of a 20-fold molar excess of albumin, although V does not displace Tf-bound Fe(III) under these conditions. Binding of V(V) or V(IV) to Tf in cell culture medium drastically reduced its cellular uptake and antiproliferative activity in the A549 (human lung cancer) cell line that expresses TfR1. BLI and gel electrophoresis studies showed that V(V/IV) binding to partially Fe(III) saturated Tf did not enhance the affinity of Tf binding to TfR1 at pH 7.4 but did disrupt Tf conformational changes under endosome-mimicking conditions (pH 5.6, 0.10 mM citrate). Hence, it is postulated that the absence of a significant cellular uptake of Tf-bound V(V/IV) is likely to be due to the return of undissociated V(V/IV)-Tf adducts to the cell surface after the endosomal step. Collectively, these data show that the biotransformation of V-based drugs leads to V(V/IV)-Tf binding in the blood serum and inhibits, rather than enhances, the biological activity of such drugs under aerobic conditions. These results indicate that the design of V-based drugs that are stable enough to survive in the blood, enter cells intact, and release the active components intracellularly is likely to be required for their clinical success.


Assuntos
Antineoplásicos/farmacologia , Transferrina/farmacologia , Vanádio/farmacologia , Células A549 , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Conformação Molecular , Transferrina/química , Transferrina/metabolismo , Células Tumorais Cultivadas , Vanádio/química , Vanádio/metabolismo
9.
Angew Chem Int Ed Engl ; 59(37): 15834-15838, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32598089

RESUMO

The chemistry and short lifetimes of metal-based anti-cancer drugs can be turned into an advantage for direct injections into tumors, which then allow the use of highly cytotoxic drugs. The release of their less toxic decomposition products into the blood will lead to decreased toxicity and can even have beneficial effects. We present a ternary VV complex, 1 ([VOL1 L2 ], where L1 is N-(salicylideneaminato)-N'-(2-hydroxyethyl)ethane-1,2-diamine and L2 is 3,5-di-tert-butylcatechol), which enters cells intact to induce high cytotoxicity in a range of human cancer cells, including T98g (glioma multiforme), while its decomposition products in cell culture medium were ≈8-fold less toxic. 1 was 12-fold more toxic than cisplatin in T98g cells and 6-fold more toxic in T98g cells than in a non-cancer human cell line, HFF-1. Its high toxicity in T98g cells was retained in the presence of physiological concentrations of the two main metal-binding serum proteins, albumin and transferrin. These properties favor further development of 1 for brain cancer treatment by intratumoral injections.


Assuntos
Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Complexos de Coordenação/química , Compostos de Vanádio/química , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Complexos de Coordenação/uso terapêutico , Meios de Cultura , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Compostos de Vanádio/uso terapêutico
10.
Inorg Chem ; 58(8): 4880-4893, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932487

RESUMO

Rhodium(III) anticancer drugs can exert preferential antimetastatic or cytotoxic activities, which are dependent on subtle structural changes. In order to delineate factors affecting the biotransformations and speciation, mer,cis-[RhCl3( S-dmso)2( O-dmso)] (A1) and mer,cis-[RhCl3( S-dmso)2(2N-indazole)] (A2) have been studied by X-ray absorption spectroscopy (XAS). Interactions of these complexes with saline buffer, cell culture media, serum proteins (albumin and apo-transferrin), native and chemically degraded collagen gels, and A549 cells have been studied using linear combination fitting (LCF) and 3D scatter plots of XAS data. Following initial aquation and hydrolysis reactions involving stepwise displacement of Cl- and S-/ O-dmso ligands, the Rh(III) complexes underwent further ligand substitution reactions with biological nucleophiles (e.g., amino acid residues of serum proteins). The reaction of A1 with chemically degraded collagen gel was postulated to be a key reason for its antimetastatic activity. Analyses of the XAS of Rh-treated bulk cells were consistent with structure-reactivity relationships in which the more reactive A1 was predominantly antimetastatic and the less reactive A2 was predominantly cytotoxic, showing relationships parallel to typical Ru(III) anticancer agents, i.e., NAMI-A ([ImH] trans-[RuCl4( S-dmso)( N-imidazole)2], ImH = imidazolium cation) and KP1019/NKP1339 (KP1019, [IndH] trans-[RuCl4(N-indazole)2], IndH = indazolium cation; NKP1339, sodium trans-[RuCl4(2N-indazole)2]), respectively.


Assuntos
Antineoplásicos/farmacologia , Dimetil Sulfóxido/química , Dimetil Sulfóxido/farmacologia , Metástase Neoplásica/prevenção & controle , Ródio/química , Ródio/farmacologia , Espectroscopia por Absorção de Raios X/métodos , Células A549 , Proteínas Sanguíneas/química , Meios de Cultura , Meios de Cultura Livres de Soro , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa