Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Physiol ; 596(23): 5993-6008, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29352468

RESUMO

KEY POINTS: Critical homeostatic behaviours such as suckling, swallowing and breathing depend on the precise control of tongue muscle activity. Perinatal nicotine exposure has multiple effects on baseline inhibitory GABAergic neurotransmission to hypoglossal motoneurons (XIIMNs), consistent with homeostatic compensations directed at maintaining normal motoneuron output. Developmental nicotine exposure (DNE) alters how GABAergic neurotransmission is modulated by acute activation of nicotinic acetylcholine receptors, which may provide insight into mechanisms by which nicotine exposure alters motor function under conditions that result in increased release of GABA, such as hypoxia, or endogenous acetylcholine, as occurs in the transition from NREM to REM sleep, or in response to exogenous nicotine. ABSTRACT: Nicotinic acetylcholine receptor (nAChR) signalling regulates neuronal differentiation and synaptogenesis. Here we test the hypothesis that developmental nicotine exposure (DNE) disrupts the development of GABAergic synaptic transmission to hypoglossal motoneurons (XIIMNs). GABAergic spontaneous and miniature inhibitory postsynaptic currents (sIPSCs/mIPSCs) were recorded from XIIMNs in brainstem slices from control and DNE rat pups of either sex, 1-5 days old, at baseline and following acute stimulation of nAChRs with nicotine. At baseline, sIPSCs were less frequent and smaller in DNE cells (consistent with decreased action potential-mediated GABA release), and mIPSCs were more frequent (consistent with increased vesicular GABA release from presynaptic terminals). Acute nicotine challenge increased sIPSC frequency in both groups, though the increase was greater in DNE cells. Acute nicotine challenge did not change the frequency of mIPSCs in either group, though mIPSC amplitude increased significantly in DNE cells, but not control cells. Stimulation of postsynaptic GABAA receptors with muscimol caused a significantly greater chloride current in DNE cells than in control cells. The increased quantal release of GABA, coupled with the rise in the strength of postsynaptic inhibition may be homeostatic adjustments to the decreased action-potential-mediated input from GABAergic interneurons. However, this will exaggerate synaptic inhibition under conditions where the release of GABA (e.g. hypoxia) or ACh (sleep-wake transitions) is increased. These findings reveal a mechanism that may explain why DNE is associated with deficits in the ability to respond appropriately to chemosensory stimuli or to changes in neuromodulation secondary to changes in central nervous system state.


Assuntos
Tronco Encefálico/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Nicotina/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Ácido gama-Aminobutírico/fisiologia , Animais , Animais Recém-Nascidos , Tronco Encefálico/fisiologia , Feminino , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Troca Materno-Fetal , Neurônios Motores/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Gravidez , Ratos Sprague-Dawley , Receptores de GABA/fisiologia , Transmissão Sináptica/efeitos dos fármacos
2.
J Neurophysiol ; 120(3): 1135-1142, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29847237

RESUMO

We tested the hypothesis that nicotine exposure in utero and after birth [developmental nicotine exposure (DNE)] disrupts development of glycinergic synaptic transmission to hypoglossal motoneurons (XIIMNs). Glycinergic spontaneous and miniature inhibitory postsynaptic currents (sIPSC/mIPSC) were recorded from XIIMNs in brain stem slices from 1- to 5-day-old rat pups of either sex, under baseline conditions and following stimulation of nicotinic acetylcholine (ACh) receptors with nicotine (i.e., an acute nicotine challenge). Under baseline conditions, there were no significant effects of DNE on the amplitude or frequency of either sIPSCs or mIPSCs. In addition, DNE did not alter the magnitude of the whole cell current evoked by bath application of glycine, consistent with an absence of change in postsynaptic glycine-mediated conductance. An acute nicotine challenge (bath application of 0.5 µM nicotine) increased sIPSC frequency in the DNE cells, but not control cells. In contrast, nicotine challenge did not change mIPSC frequency in either control or DNE cells. In addition, there were no significant changes in the amplitude of either sIPSCs or mIPSCs in response to nicotine challenge. The increased frequency of sIPSCs in response to an acute nicotine challenge in DNE cells reflects an enhancement of action potential-mediated input from glycinergic interneurons to hypoglossal motoneurons. This could lead to more intense inhibition of hypoglossal motoneurons in response to exogenous nicotine or endogenous ACh. The former would occur with smoking or e-cigarette use while the latter occurs with changes in sleep state and with hypercapnia. NEW & NOTEWORTHY Here we show that perinatal nicotine exposure does not impact baseline glycinergic neurotransmission to hypoglossal motoneurons but enhances glycinergic inputs to hypoglossal motoneurons in response to activation of nicotinic acetylcholine (ACh) receptors with acute nicotine. Given that ACh is the endogenous ligand for nicotinic ACh receptors, the latter reveals a potential mechanism whereby perinatal nicotine exposure alters motor function under conditions where ACh release increases, such as the transition from non-rapid-eye movement to rapid-eye movement sleep, and during hypercapnia.


Assuntos
Estimulantes Ganglionares/efeitos adversos , Glicinérgicos/farmacologia , Glicina/farmacologia , Nervo Hipoglosso/fisiologia , Neurônios Motores/efeitos dos fármacos , Nicotina/efeitos adversos , Transmissão Sináptica/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Tronco Encefálico/fisiologia , Feminino , Interneurônios/efeitos dos fármacos , Masculino , Potenciais da Membrana/fisiologia , Neurônios Motores/fisiologia , Técnicas de Patch-Clamp , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/fisiologia
3.
J Neurophysiol ; 117(4): 1544-1552, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28148643

RESUMO

We previously showed that nicotine exposure in utero and after birth via breast milk [developmental nicotine exposure (DNE)] is associated with many changes in the structure and function of hypoglossal motoneurons (XIIMNs), including a reduction in the size of the dendritic arbor and an increase in cell excitability. Interestingly, the elevated excitability was associated with a reduction in the expression of glutamate receptors on the cell body. Together, these observations are consistent with a homeostatic compensation aimed at restoring cell excitability. Compensation for increased cell excitability could also occur by changing potassium conductance, which plays a critical role in regulating resting potential, spike threshold, and repetitive spiking behavior. Here we test the hypothesis that the previously observed increase in the excitability of XIIMNs from DNE animals is associated with an increase in whole cell potassium currents. Potassium currents were measured in XIIMNs in brain stem slices derived from DNE and control rat pups ranging in age from 0 to 4 days by whole cell patch-clamp electrophysiology. All currents were measured after blockade of action potential-dependent synaptic transmission with tetrodotoxin. Compared with control cells, XIIMNs from DNE animals showed significantly larger transient and sustained potassium currents, but this was observed only under conditions of increased cell and network excitability, which we evoked by raising extracellular potassium from 3 to 9 mM. These observations suggest that the larger potassium currents in nicotine-exposed neurons are an important homeostatic compensation that prevents "runaway" excitability under stressful conditions, when neurons are receiving elevated excitatory synaptic input.NEW & NOTEWORTHY Developmental nicotine exposure is associated with increased cell excitability, which is often accompanied by compensatory changes aimed at normalizing excitability. Here we show that whole cell potassium currents are also increased in hypoglossal motoneurons from nicotine-exposed neonatal rats under conditions of increased cell and network excitability. This is consistent with a compensatory response aimed at preventing instability under conditions in which excitatory synaptic input is high and is compatible with the concept of homeostatic plasticity.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Tronco Encefálico , Neurônios Motores/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Potássio/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/crescimento & desenvolvimento , Tronco Encefálico/metabolismo , Cloreto de Cádmio/farmacologia , Feminino , Nervo Hipoglosso/citologia , Nervo Hipoglosso/fisiologia , Masculino , Neurônios Motores/fisiologia , Técnicas de Patch-Clamp , Potássio/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Tetrodotoxina/farmacologia
4.
J Neurophysiol ; 113(6): 1862-72, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25552642

RESUMO

Smoothly graded muscle contractions depend in part on the precision and reliability of motoneuron action potential generation. Whether or not a motoneuron generates spikes precisely and reliably depends on both its intrinsic membrane properties and the nature of the synaptic input that it receives. Factors that perturb neuronal intrinsic properties and/or synaptic drive may compromise the temporal precision and the reliability of action potential generation. We have previously shown that developmental nicotine exposure (DNE) alters intrinsic properties and synaptic transmission in hypoglossal motoneurons (XIIMNs). Here we show that the effects of DNE also include alterations in spike-timing precision and reliability, and spike-frequency adaptation, in response to sinusoidal current injection. Current-clamp experiments in brainstem slices from neonatal rats show that DNE lowers the threshold for spike generation but increases the variability of spike-timing mechanisms. DNE is also associated with an increase in spike-frequency adaptation and reductions in both peak and steady-state firing rate in response to brief, square wave current injections. Taken together, our data indicate that DNE causes significant alterations in the input-output efficiency of XIIMNs. These alterations may play a role in the increased frequency of obstructive apneas and altered suckling strength and coordination observed in nicotine-exposed neonatal humans.


Assuntos
Potenciais de Ação , Estimulantes Ganglionares/farmacologia , Nervo Hipoglosso/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Nicotina/farmacologia , Animais , Feminino , Nervo Hipoglosso/embriologia , Nervo Hipoglosso/fisiologia , Masculino , Neurônios Motores/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley , Tempo de Reação
5.
J Physiol ; 590(4): 809-25, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22183725

RESUMO

Different blends of membrane currents underlie distinct functions of neurons in the brain. A major step towards understanding neuronal function, therefore, is to identify the genes that encode different ionic currents. This study combined in situ patch clamp recordings of somatodendritic calcium currents in an identified adult Drosophila motoneuron with targeted genetic manipulation. Voltage clamp recordings revealed transient low voltage-activated (LVA) currents with activation between ­60 mV and ­70 mV as well as high voltage-activated (HVA) current with an activation voltage around ­30 mV. LVA could be fully inactivated by prepulses to ­50 mV and was partially amiloride sensitive. Recordings from newly generated mutant flies demonstrated that DmαG (Ca(v)3 homolog) encoded the amiloride-sensitive portion of the transient LVA calcium current. We further demonstrated that the Ca(v)2 homolog, Dmca1A, mediated the amiloride-insensitive component of LVA current. This novel role of Ca(v)2 channels was substantiated by patch clamp recordings from conditional mutants, RNAi knock-downs, and following Dmca1A overexpression. In addition, we show that Dmca1A underlies the HVA somatodendritic calcium currents in vivo. Therefore, the Drosophila Ca(v)2 homolog, Dmca1A, underlies HVA and LVA somatodendritic calcium currents in the same neuron. Interestingly, DmαG is required for regulating LVA and HVA derived from Dmca1A in vivo. In summary, each vertebrate gene family for voltage-gated calcium channels is represented by a single gene in Drosophila, namely Dmca1D (Ca(v)1), Dmca1A (Ca(v)2) and DmαG (Ca(v)3), but the commonly held view that LVA calcium currents are usually mediated by Ca(v)3 rather than Ca(v)2 channels may require reconsideration.


Assuntos
Canais de Cálcio/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Neurônios Motores/fisiologia , Animais , Modelos Genéticos
6.
J Neurophysiol ; 107(5): 1356-65, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22157123

RESUMO

Potassium currents play key roles in regulating motoneuron activity, including functional specializations that are important for locomotion. The thoracic and abdominal segments in the Drosophila larval ganglion have repeated arrays of motoneurons that innervate body-wall muscles used for peristaltic movements during crawling. Although abdominal motoneurons and their muscle targets have been studied in detail, owing, in part, to their involvement in locomotion, little is known about the cellular properties of motoneurons in thoracic segments. The goal of this study was to compare firing properties among thoracic motoneurons and the potassium currents that influence them. Whole-cell, patch-clamp recordings performed from motoneurons in two thoracic and one abdominal segment revealed both transient and sustained voltage-activated K(+) currents, each with Ca(++)-sensitive and Ca(++)-insensitive [A-type, voltage-dependent transient K(+) current (I(Av))] components. Segmental differences in the expression of voltage-activated K(+) currents were observed. In addition, we demonstrate that Shal contributes to I(Av) currents in the motoneurons of the first thoracic segment.


Assuntos
Potenciais de Ação/fisiologia , Neurônios Motores/fisiologia , Canais de Potássio/fisiologia , Abdome/fisiologia , Animais , Drosophila , Interneurônios/fisiologia , Larva , Tórax/fisiologia
7.
J Neurophysiol ; 107(10): 2660-71, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22323637

RESUMO

Diversity in the expression of K(+) channels among neurons allows a wide range of excitability, growth, and functional regulation. Ether-à-go-go (EAG), a voltage-gated K(+) channel, was first characterized in Drosophila mutants by spontaneous firing in nerve terminals and enhanced neurotransmitter release. Although diverse functions have been ascribed to this protein, its role within neurons remains poorly understood. The aim of this study was to characterize the function of EAG in situ in Drosophila larval motoneurons. Whole cell patch-clamp recordings performed from the somata revealed a decrease in I(Av) and I(Kv) K(+) currents in eag mutants and with targeted eag RNAi expression. Spontaneous spike-like events were observed in eag mutants but absent in wild-type motoneurons. Thus our results provide evidence that EAG represents a unique K(+) channel contributing to multiple K(+) currents in motoneurons helping to regulate excitability, consistent with previous observations in the Drosophila larval muscle.


Assuntos
Proteínas de Drosophila/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Ativação do Canal Iônico/fisiologia , Neurônios Motores/metabolismo , Potássio/metabolismo , Animais , Drosophila/fisiologia , Larva/fisiologia , Músculos/metabolismo
8.
J Neurophysiol ; 107(1): 257-64, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22013232

RESUMO

Neuronal nicotinic acetylcholine receptors (nAChRs) are expressed on hypoglossal motor neurons (XII MNs) that innervate muscles of the tongue. Activation of XII MN nAChRs evokes depolarizing currents, which are important for regulating the size and stiffness of the upper airway. Although data show that chronic developmental nicotine exposure (DNE) blunts cholinergic neurotransmission in the XII motor nucleus, it is unclear how nAChRs are involved. Therefore, XII MN nAChR desensitization and recovery were examined in tissues from DNE or control pups using a medullary slice preparation and tight-seal whole cell patch-clamp recordings. nAChR-mediated inward currents were evoked by brief pressure pulses of nicotine or the α4ß2 nAChR agonist RJR-2403. We found that, regardless of treatment, activatable nAChRs underwent desensitization, but, following DNE, nAChRs exhibited increased desensitization and delayed recovery. Similar results were produced using RJR-2403, showing that DNE influences primarily the α4ß2 nAChR subtype. These results show that while some nAChRs preserve their responsiveness to acute nicotine following DNE, they more readily desensitize and recover more slowly from the desensitized state. These data provide new evidence that chronic DNE modulates XII MN nAChR function, and suggests an explanation for the association between DNE and the incidence of central and obstructive apneas.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Nervo Hipoglosso/fisiopatologia , Bulbo/fisiopatologia , Neurônios Motores/metabolismo , Nicotina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Receptores Nicotínicos/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Nervo Hipoglosso/efeitos dos fármacos , Masculino , Bulbo/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Antagonistas Nicotínicos/toxicidade , Gravidez , Ratos
9.
Dev Neurobiol ; 82(2): 175-191, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35016263

RESUMO

Serotonin plays an important role in the development of brainstem circuits that control breathing. Here, we test the hypothesis that developmental nicotine exposure (DNE) alters the breathing-related motor response to serotonin (5HT). Pregnant rats were exposed to nicotine or saline, and brainstem-spinal cord preparations from 1- to 5-day-old pups were studied in a split-bath configuration, allowing drugs to be applied selectively to the medulla or spinal cord. The activity of the fourth cervical ventral nerve roots (C4VR), which contain axons of phrenic motoneurons, was recorded. We applied 5HT alone or together with antagonists of 5HT1A, 5HT2A, or 5HT7 receptor subtypes. In control preparations, 5HT applied to the medulla consistently reduced C4VR frequency and this reduction could not be blocked by any of the three antagonists. In DNE preparations, medullary 5HT caused a large and sustained frequency increase (10 min), followed by a sustained decrease. Notably, the transient increase in frequency could be blocked by the independent addition of any of the antagonists. Experiments with subtype-specific agonists suggest that the 5HT7 subtype may contribute to the increased frequency response in the DNE preparations. Changes in C4VR burst amplitude in response to brainstem 5HT were uninfluenced by DNE. Addition of 5HT to the caudal chamber modestly increased phasic and greatly increased tonic C4VR activity, but there were no effects of DNE. The data show that DNE alters serotonergic signaling within brainstem circuits that control respiratory frequency but does not functionally alter serotonin signaling in the phrenic motoneuron pool.


Assuntos
Nicotina , Efeitos Tardios da Exposição Pré-Natal , Animais , Animais Recém-Nascidos , Feminino , Nicotina/farmacologia , Gravidez , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
10.
J Neurophysiol ; 105(1): 423-33, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21068261

RESUMO

Hypoglossal motoneurons (XII MNs) control muscles of the mammalian tongue and are rhythmically active during breathing. Acetylcholine (ACh) modulates XII MN activity by promoting the release of glutamate from neurons that express nicotinic ACh receptors (nAChRs). Chronic nicotine exposure alters nAChRs on neurons throughout the brain, including brain stem respiratory neurons. Here we test the hypothesis that developmental nicotine exposure (DNE) reduces excitatory synaptic input to XII MNs. Voltage-clamp experiments in rhythmically active medullary slices showed that the frequency of excitatory postsynaptic currents (EPSCs) onto XII MNs from DNE animals is reduced by 61% (DNE = 1.7 ± 0.4 events/s; control = 4.4 ± 0.6 events/s; P < 0.002). We also examine the intrinsic excitability of XII MNs to test whether cells from DNE animals have altered membrane properties. Current-clamp experiments showed XII MNs from DNE animals had higher intrinsic excitability, as evaluated by measuring their response to injected current. DNE cells had high-input resistances (DNE = 131.9 ± 13.7 MΩ, control = 78.6 ± 9.7 MΩ, P < 0.008), began firing at lower current levels (DNE = 144 ± 22 pA, control = 351 ± 45 pA, P < 0.003), and exhibited higher frequency-current gain values (DNE = 0.087 ± 0.012 Hz/pA, control = 0.050 ± 0.004 Hz/pA, P < 0.02). Taken together, our data show previously unreported effects of DNE on XII MN function and may also help to explain the association between DNE and the incidence of central and obstructive apneas.


Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/fisiologia , Nervo Hipoglosso/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Nicotina/farmacologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Fenômenos Biofísicos , Feminino , Ácido Glutâmico/metabolismo , Nervo Hipoglosso/fisiologia , Masculino , Modelos Animais , Neurônios Motores/fisiologia , Técnicas de Patch-Clamp , Gravidez , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/fisiologia , Transmissão Sináptica/fisiologia
11.
Neuron ; 52(6): 997-1009, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17178403

RESUMO

Local control of mRNA translation modulates neuronal development, synaptic plasticity, and memory formation. A poorly understood aspect of this control is the role and composition of ribonucleoprotein (RNP) particles that mediate transport and translation of neuronal RNAs. Here, we show that staufen- and FMRP-containing RNPs in Drosophila neurons contain proteins also present in somatic "P bodies," including the RNA-degradative enzymes Dcp1p and Xrn1p/Pacman and crucial components of miRNA (argonaute), NMD (Upf1p), and general translational repression (Dhh1p/Me31B) pathways. Drosophila Me31B is shown to participate (1) with an FMRP-associated, P body protein (Scd6p/trailer hitch) in FMRP-driven, argonaute-dependent translational repression in developing eye imaginal discs; (2) in dendritic elaboration of larval sensory neurons; and (3) in bantam miRNA-mediated translational repression in wing imaginal discs. These results argue for a conserved mechanism of translational control critical to neuronal function and open up new experimental avenues for understanding the regulation of mRNA function within neurons.


Assuntos
Proteínas de Drosophila/fisiologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/fisiologia , Animais , Animais Geneticamente Modificados , Northern Blotting , Western Blotting/métodos , Caspases/metabolismo , Células Cultivadas , Sistema Nervoso Central/citologia , Dendritos/metabolismo , Dendritos/fisiologia , Drosophila , Proteínas de Drosophila/metabolismo , Exorribonucleases/metabolismo , Olho/metabolismo , Olho/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica/métodos , Larva , MicroRNAs/metabolismo , Microscopia Eletrônica de Varredura/métodos , Neurônios/citologia , Biossíntese de Proteínas/fisiologia , Transporte Proteico/fisiologia , Complexo de Inativação Induzido por RNA/metabolismo
12.
J Neurophysiol ; 104(3): 1257-66, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20573969

RESUMO

Motoneurons in most organisms conserve a division into low-threshold and high-threshold types that are responsible for generating powerful and precise movements. Drosophila 1b and 1s motoneurons may be analogous to low-threshold and high-threshold neurons, respectively, based on data obtained at the neuromuscular junction, although there is little information available on intrinsic properties or recruitment during behavior. Therefore in situ whole cell patch-clamp recordings were used to compare parameters of 1b and 1s motoneurons in Drosophila larvae. We find that resting membrane potential, voltage threshold, and delay-to-spike distinguish 1b from 1s motoneurons. The longer delay-to-spike in 1s motoneurons is a result of the shal-encoded A-type K(+) current. Functional differences between 1b and 1s motoneurons are behaviorally relevant because a higher threshold and longer delay-to-spike are observed in MNISN-1s in pairwise whole cell recordings of synaptically evoked activity during bouts of fictive locomotion.


Assuntos
Atividade Motora/fisiologia , Neurônios Motores/fisiologia , Recrutamento Neurofisiológico/fisiologia , Animais , Drosophila melanogaster , Técnicas de Silenciamento de Genes , Potenciais da Membrana/fisiologia
13.
eNeuro ; 6(6)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31712219

RESUMO

Nicotine exposure during the fetal and neonatal periods [developmental nicotine exposure (DNE)] is associated with ineffective upper airway protective reflexes in infants. This could be explained by desensitized chemoreceptors and/or mechanoreceptors, diminished neuromuscular transmission or altered synaptic transmission among central neurons, as each of these systems depend in part on cholinergic signaling through nicotinic AChRs (nAChRs). Here, we showed that DNE blunts the response of the genioglossus (GG) muscle to nasal airway occlusion in lightly anesthetized rat pups. The GG muscle helps keep the upper airway open and is innervated by hypoglossal motoneurons (XIIMNs). Experiments using the phrenic nerve-diaphragm preparation showed that DNE does not alter transmission across the neuromuscular junction. Accordingly, we used whole cell recordings from XIIMNs in brainstem slices to examine the influence of DNE on glutamatergic synaptic transmission under baseline conditions and in response to an acute nicotine challenge. DNE did not alter excitatory transmission under baseline conditions. Analysis of cumulative probability distributions revealed that acute nicotine challenge of P1-P2 preparations resulted in an increase in the frequency of nicotine-induced glutamatergic inputs to XIIMNs in both control and DNE. By contrast, P3-P5 DNE pups showed a decrease, rather than an increase in frequency. We suggest that this, together with previous studies showing that DNE is associated with a compensatory increase in inhibitory synaptic input to XIIMNs, leads to an excitatory-inhibitory imbalance. This imbalance may contribute to the blunting of airway protective reflexes observed in nicotine exposed animals and human infants.


Assuntos
Neurônios Motores/efeitos dos fármacos , Músculo Esquelético/inervação , Nicotina/farmacologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Feminino , Neurônios Motores/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Agonistas Nicotínicos/farmacologia , Técnicas de Patch-Clamp , Gravidez , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
14.
Exp Neurol ; 287(Pt 2): 254-260, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27477858

RESUMO

Developmental nicotine exposure (DNE) is associated with increased risk of cardiorespiratory, intellectual, and behavioral abnormalities in neonates, and is a risk factor for apnea of prematurity, altered arousal responses and Sudden Infant Death Syndrome. Alterations in nicotinic acetylcholine receptor signaling (nAChRs) after DNE lead to changes in excitatory neurotransmission in neural networks that control breathing, including a heightened excitatory response to AMPA microinjection into the hypoglossal motor nucleus. Here, we report on experiments designed to probe possible postsynaptic and presynaptic mechanisms that may underlie this plasticity. Pregnant dams were exposed to nicotine or saline via an osmotic mini-pump implanted on the 5th day of gestation. We used whole-cell patch clamp electrophysiology to record from hypoglossal motoneurons (XIIMNs) in thick medullary slices from neonatal rat pups (N=26 control and 24 DNE cells). To enable the translation of our findings to breathing-related consequences of DNE, we only studied XIIMNs that were receiving rhythmic excitatory drive from the respiratory central pattern generator. Tetrodotoxin was used to isolate XIIMNs from presynaptic input, and their postsynaptic responses to bath application of l-glutamic acid (glutamate) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were studied under voltage clamp. DNE had no influence on inward current magnitude evoked by either glutamate or AMPA. However, in cells from DNE animals, bath application of AMPA was associated with a right shift in the amplitude distribution (P=0.0004), but no change in the inter-event interval distribution of miniature excitatory postsynaptic currents (mEPSCs). DNE had no influence on mEPSC amplitude or frequency evoked by glutamate application, or under (unstimulated) baseline conditions. Thus, in the presence of AMPA, DNE is associated with a small but significant increase in quantal size, but no change in the probability of glutamate release.


Assuntos
Ácido Glutâmico/metabolismo , Nervo Hipoglosso/citologia , Neurônios Motores/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos , Interações Medicamentosas , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Nervo Hipoglosso/crescimento & desenvolvimento , Técnicas In Vitro , Masculino , Bulbo/citologia , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Transmissão Sináptica/fisiologia , Tetrodotoxina/farmacologia
15.
J Neurosci ; 25(2): 271-80, 2005 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-15647470

RESUMO

The adult abdominal heart of Drosophila melanogaster receives extensive innervation from glutamatergic neurons at specific cardiac regions during metamorphosis. Here, we show that the neurons form presynaptic specializations, as indicated by the localization of synaptotagmin and active zone markers, adjacent to postsynaptic sites that have aggregates of glutamate IIA receptors. To determine the role of this innervation in cardiac function, we developed an optical technique, based on the movement of green fluorescent protein-labeled nerve terminals, to monitor heart beat in intact and semi-intact preparations. Simultaneous monitoring of adjacent cardiac chambers revealed the direction of contractions and allowed correlation with volume changes. The cardiac cycle is composed of an anterograde beat in alternation with a retrograde beat, which correlate respectively with systole and diastole of this multichambered heart. The periodic change in hemolymph direction is referred to as cardiac reversal. Intracellular recordings from muscles of the first abdominal cardiac chamber, the conical chamber, revealed pacemaker action potentials and the excitatory effect of local glutamate application, which initiated retrograde contractions in semi-intact preparations. Unilateral electrical stimulation of the transverse nerve containing the glutamatergic neuron that serves the conical chamber caused a chronotropic effect and initiation of retrograde contractions. This effect is distinct from that of peripheral crustacean cardioactive peptide (CCAP) neurons, which potentiate the anterograde beat. Cardiac reversal was evoked pharmacologically by sequentially applying CCAP and glutamate to the heart.


Assuntos
Drosophila melanogaster/fisiologia , Ácido Glutâmico/fisiologia , Envelhecimento/fisiologia , Animais , Animais Geneticamente Modificados , Estimulação Elétrica , Coração/efeitos dos fármacos , Coração/inervação , Imuno-Histoquímica , Contração Miocárdica/fisiologia , Neuropeptídeos/farmacologia , Receptores de AMPA/fisiologia , Sinapses/fisiologia
16.
Dev Neurobiol ; 76(10): 1125-37, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26818139

RESUMO

Maternal smoking or use of other products containing nicotine during pregnancy can have significant adverse consequences for respiratory function in neonates. We have shown, in previous studies, that developmental nicotine exposure (DNE) in a model system compromises the normal function of respiratory circuits within the brainstem. The effects of DNE include alterations in the excitability and synaptic interactions of the hypoglossal motoneurons, which innervate muscles of the tongue. This study was undertaken to test the hypothesis that these functional consequences of DNE are accompanied by changes in the dendritic morphology of hypoglossal motoneurons. Hypoglossal motoneurons in brain stem slices were filled with neurobiotin during whole-cell patch clamp recordings and subjected to histological processing to reveal dendrites. Morphometric analysis, including the Sholl method, revealed significant effects of DNE on dendritic branching patterns. In particular, whereas within the first five postnatal days there was significant growth of the higher-order dendritic branches of motoneurons from control animals, the growth was compromised in motoneurons from neonates that were subjected to DNE. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1125-1137, 2016.


Assuntos
Tronco Encefálico/crescimento & desenvolvimento , Nervo Hipoglosso/crescimento & desenvolvimento , Neurônios Motores/patologia , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Animais Recém-Nascidos , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/patologia , Tronco Encefálico/fisiopatologia , Dendritos/efeitos dos fármacos , Dendritos/patologia , Dendritos/fisiologia , Modelos Animais de Doenças , Feminino , Nervo Hipoglosso/efeitos dos fármacos , Nervo Hipoglosso/patologia , Nervo Hipoglosso/fisiopatologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Técnicas de Rastreamento Neuroanatômico , Técnicas de Patch-Clamp , Gravidez , Ratos Sprague-Dawley , Transmissão Sináptica , Técnicas de Cultura de Tecidos
17.
Dev Neurobiol ; 76(10): 1138-49, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26818254

RESUMO

Prenatal nicotine exposure with continued exposure through breast milk over the first week of life (developmental nicotine exposure, DNE) alters the development of brainstem circuits that control breathing. Here, we test the hypothesis that DNE alters the respiratory motor response to endogenous and exogenous acetylcholine (ACh) in neonatal rats. We used the brainstem-spinal cord preparation in the split-bath configuration, and applied drugs to the brainstem compartment while measuring the burst frequency and amplitude of the fourth cervical ventral nerve roots (C4VR), which contain the axons of phrenic motoneurons. We applied ACh alone; the nicotinic acetylcholine receptor (nAChR) antagonist curare, either alone or in the presence of ACh; and the muscarinic acetylcholine receptor (mAChR) antagonist atropine, either alone or in the presence of ACh. The main findings include: (1) atropine reduced frequency similarly in controls and DNE animals, while curare caused modest slowing in controls but no consistent change in DNE animals; (2) DNE greatly attenuated the increase in C4VR frequency mediated by exogenous ACh; (3) stimulation of nAChRs with ACh in the presence of atropine increased frequency markedly in controls, but not DNE animals; (4) stimulation of mAChRs with ACh in the presence of curare caused a modest increase in frequency, with no treatment group differences. DNE blunts the response of the respiratory central pattern generator to exogenous ACh, consistent with reduced availability of functionally competent nAChRs; DNE did not alter the muscarinic control of respiratory motor output. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1138-1149, 2016.


Assuntos
Acetilcolina/metabolismo , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Respiração , Acetilcolina/farmacologia , Animais , Animais Recém-Nascidos , Atropina/farmacologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/crescimento & desenvolvimento , Tronco Encefálico/metabolismo , Agonistas Colinérgicos/farmacologia , Curare/farmacologia , Modelos Animais de Doenças , Feminino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Antagonistas Muscarínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Nervo Frênico/efeitos dos fármacos , Nervo Frênico/crescimento & desenvolvimento , Nervo Frênico/metabolismo , Gravidez , Ratos Sprague-Dawley , Respiração/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Técnicas de Cultura de Tecidos
18.
J Neurosci ; 22(12): 4906-17, 2002 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12077188

RESUMO

Insect motoneurons display dramatic dendritic plasticity during metamorphosis. Many larval motoneurons survive to adulthood but undergo dendritic regression and outgrowth as they are incorporated into developing circuits. This study explores the dendritic remodeling and development of Drosophila motoneurons MN1-MN5, which innervate indirect flight muscles of the adult. MN1-MN5 are persistent larval neurons exhibiting two distinct metamorphic histories. MN1-MN4 are born in the embryo, innervate larval muscles, and undergo dendritic regression and regrowth during metamorphosis. MN5, which was identified through a combination of intracellular dye injection and retrograde staining at all stages, is also born embryonically but remains developmentally arrested until the onset of metamorphosis. In the larva, MN5 lacks dendrites, and its axon stops in the mesothoracic nerve without innervating a target muscle. It is dye coupled to the peripherally synapsing interneuron, which will become part of the giant fiber escape circuit of the adult fly. During pupal development, MN5 undergoes de novo dendritic growth and extension of its axon to innervate the developing target muscle. Its unique developmental history and identifiability make MN5 well suited for the study of dendritic growth using genetic and neurophysiological approaches.


Assuntos
Sistema Nervoso Central/crescimento & desenvolvimento , Dendritos/ultraestrutura , Drosophila melanogaster/crescimento & desenvolvimento , Metamorfose Biológica , Neurônios Motores/citologia , Animais , Axônios/ultraestrutura , Divisão Celular , Drosophila melanogaster/citologia , Cinética , Larva/citologia , Larva/crescimento & desenvolvimento , Microscopia Confocal , Modelos Biológicos , Plasticidade Neuronal
19.
J Comp Neurol ; 485(4): 321-37, 2005 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-15803508

RESUMO

Dendrites are subject to subtle modifications as well as extensive remodeling during the assembly and maturation of neural circuits in a wide variety of organisms. During metamorphosis, Drosophila flight motoneurons MN1-MN4 undergo dendritic regression, followed by regrowth, whereas MN5 differentiates de novo (Consoulas et al. [2002] J. Neurosci. 22:4906-4917). Many cellular changes during metamorphosis are triggered and orchestrated by the steroid hormone 20-hydroxyecdysone, which initiates a cascade of coordinated gene expression. Broad Complex (BRC), a primary response gene in the ecdysone cascade, encodes a family of transcription factors (BRC-Z1-Z4) that are essential for metamorphic reorganization of the central nervous system (CNS). Using neuron-filling techniques that reveal cellular morphology with very high resolution, we tested the hypothesis that BRC is required for metamorphic development of MN1-MN5. Through a combination of loss-of-function mutant analyses, genetic mapping, and transgenic rescue experiments, we found that 2Bc function, mediated by BRC-Z3, is required selectively for motoneuron dendritic regrowth (MN1-MN4) and de novo outgrowth (MN5), as well as for soma expansion of MN5. In contrast, larval development and dendritic regression of MN1-MN4 are BRC-independent. Surprisingly, BRC proteins are not expressed in the motoneurons, suggesting that BRC-Z3 exerts its effect in a non-cell-autonomous manner. The 2Bc mutants display no gross defects in overall thoracic CNS structure, or in peripheral structures such as target muscles or sensory neurons. Candidates for mediating the effect of BRC-Z3 on dendritic growth of MN1-MN5 include their synaptic inputs and non-neuronal CNS cells that interact with them through direct contact or diffusible factors.


Assuntos
Dendritos/fisiologia , Proteínas de Drosophila/biossíntese , Drosophila/metabolismo , Ecdisterona/biossíntese , Metamorfose Biológica/fisiologia , Neurônios Motores/fisiologia , Fatores de Transcrição/biossíntese , Animais , Animais Geneticamente Modificados , Dendritos/genética , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Ecdisterona/genética , Mutação , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
20.
J Comp Neurol ; 478(2): 126-42, 2004 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-15349974

RESUMO

During postembryonic development, a larval skeletal muscle motoneuron, MN-1 in abdominal segments 7 and 8, becomes respecified to innervate the terminal cardiac chamber of adult Manduca sexta. Neural tracing techniques and electrophysiology were used in this study to describe the anatomical and physiological remodeling of this identified motoneuron. During metamorphosis the MN-1 in segments 7 and 8 undergoes dendritic reorganization. Long new dendrites extend anteriorly in the terminal ganglion neuropil. Intracellular and extracellular recordings showed that broader action potentials, increased firing rate, and development of a bursting activity pattern accompany MN-1 respecification. Cardiac mechanograms showed that MN-1 activity bursts always correlate with the anterograde cardiac beat. Bilateral MNs-1 fire at similar times to activate and sustain the putative cardiac pacemaker activity of the terminal chamber synergistically. After remodeling, MN-1 output could be influenced rapidly by sensory inputs during evoked cardiac reversal. The effect is exerted by inhibition of MN-1 firing that, in turn, causes early blockade of the anterograde beat and reversal to the retrograde direction of beat.


Assuntos
Coração/embriologia , Manduca/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Nó Sinoatrial/fisiologia , Potenciais de Ação/fisiologia , Animais , Eletrofisiologia , Coração/inervação , Larva , Microscopia Confocal , Neurônios Motores/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa