Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 13(2): e1006197, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28166307

RESUMO

Picornaviruses are non-enveloped RNA viruses that enter cells via receptor-mediated endocytosis. Because they lack an envelope, picornaviruses face the challenge of delivering their RNA genomes across the membrane of the endocytic vesicle into the cytoplasm to initiate infection. Currently, the mechanism of genome release and translocation across membranes remains poorly understood. Within the enterovirus genus, poliovirus, rhinovirus 2, and rhinovirus 16 have been proposed to release their genomes across intact endosomal membranes through virally induced pores, whereas one study has proposed that rhinovirus 14 releases its RNA following disruption of endosomal membranes. For the more distantly related aphthovirus genus (e.g. foot-and-mouth disease viruses and equine rhinitis A virus) acidification of endosomes results in the disassembly of the virion into pentamers and in the release of the viral RNA into the lumen of the endosome, but no details have been elucidated as how the RNA crosses the vesicle membrane. However, more recent studies suggest aphthovirus RNA is released from intact particles and the dissociation to pentamers may be a late event. In this study we have investigated the RNase A sensitivity of genome translocation of poliovirus using a receptor-decorated-liposome model and the sensitivity of infection of poliovirus and equine-rhinitis A virus to co-internalized RNase A. We show that poliovirus genome translocation is insensitive to RNase A and results in little or no release into the medium in the liposome model. We also show that infectivity is not reduced by co-internalized RNase A for poliovirus and equine rhinitis A virus. Additionally, we show that all poliovirus genomes that are internalized into cells, not just those resulting in infection, are protected from RNase A. These results support a finely coordinated, directional model of viral RNA delivery that involves viral proteins and cellular membranes.


Assuntos
Infecções por Picornaviridae/metabolismo , Picornaviridae/patogenicidade , RNA Viral/metabolismo , Vírion/patogenicidade , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Lipossomos , Microscopia de Fluorescência , Picornaviridae/metabolismo
2.
J Virol ; 87(7): 3903-14, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23365424

RESUMO

During infection, the binding of poliovirus to its cell surface receptor at 37°C triggers an expansion of the virus in which internal polypeptides that bind to membranes are externalized. Subsequently, in a poorly understood process, the viral RNA genome is transferred directly across an endosomal membrane, and into the host cell cytoplasm, to initiate infection. Here, cryoelectron tomography demonstrates the results of 37°C warming of a poliovirus-receptor-liposome model complex that was produced using Ni-nitrilotriacetic acid lipids and His-tagged receptor ectodomains. In total, 651 subtomographic volumes were aligned, classified, and averaged to obtain detailed pictures, showing both the conversion of virus into its expanded form and the passage of RNA into intact liposomes. Unexpectedly, the virus and membrane surfaces were located ∼50 Å apart, with the 5-fold axis tilted away from the perpendicular, and the solvent spaces between them were spanned by either one or two long "umbilical" density features that lie at an angle to the virus and membrane. The thinner connector, which sometimes appears alone, is 28 to 30 Å in diameter and has a footprint on the virus surface located close to either a 5-fold or a 3-fold axis. The broader connector has a footprint near the quasi-3-fold hole that opens upon virus expansion and is hypothesized to include RNA, shielded from enzymatic degradation by polypeptides that include the N-terminal extension of VP1 and capsid protein VP4. The implications of these observations for the mechanism of RNase-protected RNA transfer in picornaviruses are discussed.


Assuntos
Lipossomos/metabolismo , Modelos Biológicos , Poliovirus/fisiologia , RNA Viral/metabolismo , Receptores Virais/metabolismo , Ligação Viral , Internalização do Vírus , Tomografia com Microscopia Eletrônica , Ácido Nitrilotriacético/análogos & derivados , Compostos Organometálicos , Poliovirus/metabolismo , Poliovirus/ultraestrutura , Temperatura
3.
J Virol ; 84(9): 4426-41, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20181687

RESUMO

Poliovirus infection requires that the particle undergo a series of conformational transitions that lead to cell entry and genome release. In an effort to understand the conformational changes associated with the release of the RNA genome, we have used cryo-electron microscopy to characterize the structure of the 80S "empty" particles of poliovirus that are thought to represent the final product of the cell entry pathway. Using two-dimensional classification methods, we show that preparations of 80S particles contain at least two structures, which might represent snapshots from a continuous series of conformers. Using three-dimensional reconstruction methods, we have solved the structure of two distinct forms at subnanometric resolution, and we have built and refined pseudoatomic models into the reconstructions. The reconstructions and the derived models demonstrate that the two structural forms are both slightly expanded, resulting in partial disruption of interprotomer interfaces near their particle 2-fold axes, which may represent the site where RNA is released. The models demonstrate that each of the two 80S structures has undergone a unique set of movements of the capsid proteins, associated with rearrangement of flexible loops and amino-terminal extensions that participate in contacts between protomers, between pentamers, and with the viral RNA.


Assuntos
Poliovirus/fisiologia , Poliovirus/ultraestrutura , RNA Viral/metabolismo , Vírion/ultraestrutura , Internalização do Vírus , Microscopia Crioeletrônica , Células HeLa , Humanos , Imageamento Tridimensional , Modelos Moleculares , Estrutura Quaternária de Proteína
4.
PLoS One ; 15(2): e0228005, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027681

RESUMO

Targeted gene therapy using recombinant adeno-associated virus (rAAV) vectors is a potential therapeutic strategy for treating cancer, and tissue-specific promoters may help with tissue targeting. Medullary thyroid carcinoma (MTC) is a disease of the calcitonin secreting thyroid C cells, and calcitonin is highly expressed in MTC tumors compared to other cells. To target MTC cells, we evaluated an rAAV serotype 2 vector (rAAV2-pM+104-GFP) containing a modified calcitonin/calcitonin gene related peptide promoter (pM+104) and a green fluorescent protein (GFP) reporter gene. In vitro transduction experiments comparing the MTC TT cell line with non-MTC cell lines demonstrated that rAAV2-pM+104-GFP infection yielded significantly (p < 0.05) higher GFP expression in TT cells than in non-MTC cell lines (HEK293 and HeLa), and significantly higher expression than in TT cells infected with the positive control rAAV2-pCBA-GFP vector. The rAAV2-pCBA-GFP control vector included a well-characterized, ubiquitously expresses control promoter, the chicken beta actin promoter with a cytomegalovirus enhancer (pCBA). In vivo experiments using a TT cell xenograft tumor mouse model showed that tumors directly injected with 2 x 1010 vg of rAAV2-pM+104-GFP vector resulted in GFP expression detected in 21.7% of cells, 48 hours after the injection. Furthermore, GFP expression was significantly higher for rAAV-pM+104-GFP treatments with a longer vector treatment duration and higher vector dose, with up to 52.6% (q < 0.05) GFP cells detected 72 hours after injecting 1x 1011 vg/tumor. These data show that we have developed an rAAV vector with improved selectivity for MTC.


Assuntos
Calcitonina/genética , Carcinoma Neuroendócrino/terapia , Dependovirus/genética , Vetores Genéticos/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Neoplasias da Glândula Tireoide/terapia , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Luciferases/metabolismo , Masculino , Camundongos SCID , Regiões Promotoras Genéticas , Transgenes , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Struct Biol ; 165(3): 146-56, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19121398

RESUMO

Adeno-associated virus serotype 2 (AAV2) uses heparan sulfate proteoglycan as a cell surface-attachment receptor. In this study the structures of AAV2 alone and complexed with heparin were determined to approximately 18A resolution using cryo-electron microscopy and three-dimensional image reconstruction. A difference map showed positive density, modeled as heparin, close to the icosahedral twofold axes and between the protrusions that surround the threefold axes of the capsid. Regions of the model near the threefold place the receptor in close proximity to basic residues previously identified as part of the heparin binding site. The region of the model near the twofold axes identifies a second contact site, not previously characterized but which is also possibly configured by heparin binding. The difference map also revealed two significant conformational changes: (I) at the tops of the threefold protrusions, which have become flattened in the complex, and (II) at the fivefold axes where the top of the channel is widened possibly in response to movement of the HI loops in the capsid proteins. Ordered density in the interior of the capsid in the AAV2-heparin complex was interpreted as nucleic acid, consistent with the presence of non-viral DNA in the expressed capsids.


Assuntos
Dependovirus/química , Heparina/química , Capsídeo/química , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Mutagênese Sítio-Dirigida , Nucleocapsídeo/química , Conformação Proteica , Vírion/química
6.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 61(Pt 10): 917-21, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16511195

RESUMO

Adeno-associated virus serotype 5 (AAV5) is under development for gene-therapy applications for the treatment of cystic fibrosis. To elucidate the structural features of AAV5 that control its enhanced transduction of the apical surface of airway epithelia compared with other AAV serotypes, X-ray crystallographic studies of the viral capsid have been initiated. The production, purification, crystallization and preliminary crystallographic analysis of empty AAV5 viral capsids are reported. The crystals diffract X-rays to beyond 3.2 A resolution using synchrotron radiation and belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 264.7, b = 447.9, c = 629.7 A. There is one complete T = 1 viral capsid per asymmetric unit. The orientation and position of the viral capsid in the asymmetric unit have been determined by rotation and translation functions, respectively, and the AAV5 structure determination is in progress.


Assuntos
Capsídeo/química , Dependovirus/ultraestrutura , Cristalização , Cristalografia por Raios X , Terapia Genética , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Fases de Leitura Aberta , Síncrotrons , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa