Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 161(2): 215-27, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25772698

RESUMO

Variability is a prominent feature of behavior and is an active element of certain behavioral strategies. To understand how neuronal circuits control variability, we examined the propagation of sensory information in a chemotaxis circuit of C. elegans where discrete sensory inputs can drive a probabilistic behavioral response. Olfactory neurons respond to odor stimuli with rapid and reliable changes in activity, but downstream AIB interneurons respond with a probabilistic delay. The interneuron response to odor depends on the collective activity of multiple neurons-AIB, RIM, and AVA-when the odor stimulus arrives. Certain activity states of the network correlate with reliable responses to odor stimuli. Artificially generating these activity states by modifying neuronal activity increases the reliability of odor responses in interneurons and the reliability of the behavioral response to odor. The integration of sensory information with network states may represent a general mechanism for generating variability in behavior.


Assuntos
Caenorhabditis elegans/fisiologia , Condutos Olfatórios , Animais , Comportamento Animal , Sinalização do Cálcio , Neurônios/metabolismo , Odorantes
2.
Proc Natl Acad Sci U S A ; 114(7): E1263-E1272, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28143932

RESUMO

A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9-containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9-based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits.


Assuntos
Caenorhabditis elegans/metabolismo , Sinapses Elétricas/metabolismo , Junções Comunicantes/metabolismo , Células Receptoras Sensoriais/metabolismo , Comportamento Social , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sinapses Elétricas/genética , Junções Comunicantes/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Atividade Motora/genética , Feromônios/metabolismo , Transdução de Sinais/genética
3.
Neuron ; 105(3): 534-548.e13, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31761709

RESUMO

Identifying the environmental information and computations that drive sensory detection is key for understanding animal behavior. Using experimental and theoretical analysis of AWCON, a well-described olfactory neuron in C. elegans, here we derive a general and broadly useful model that matches stimulus history to odor sensation and behavioral responses. We show that AWCON sensory activity is regulated by an absolute signal threshold that continuously adapts to odor history, allowing animals to compare present and past odor concentrations. The model predicts sensory activity and probabilistic behavior during animal navigation in different odor gradients and across a broad stimulus regime. Genetic studies demonstrate that the cGMP-dependent protein kinase EGL-4 determines the timescale of threshold adaptation, defining a molecular basis for a critical model feature. The adaptive threshold model efficiently filters stimulus noise, allowing reliable sensation in fluctuating environments, and represents a feedforward sensory mechanism with implications for other sensory systems.


Assuntos
Adaptação Fisiológica/fisiologia , Odorantes , Olfato/fisiologia , Navegação Espacial/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Peixe-Zebra
4.
Genetics ; 214(1): 163-178, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31776169

RESUMO

Members of the superfamily of solute carrier (SLC) transmembrane proteins transport diverse substrates across distinct cellular membranes. Three SLC protein families transport distinct neurotransmitters into synaptic vesicles to enable synaptic transmission in the nervous system. Among them is the SLC17A6/7/8 family of vesicular glutamate transporters, which endows specific neuronal cell types with the ability to use glutamate as a neurotransmitter. The genome of the nematode Caenorhabditis elegans encodes three SLC17A6/7/8 family members, one of which, eat-4/VGLUT, has been shown to be involved in glutamatergic neurotransmission. Here, we describe our analysis of the two remaining, previously uncharacterized SLC17A6/7/8 family members, vglu-2 and vglu-3 These two genes directly neighbor one another and are the result of a recent gene duplication event in C. elegans, but not in other Caenorhabditis species. Compared to EAT-4, the VGLU-2 and VGLU-3 protein sequences display a more distant similarity to canonical, vertebrate VGLUT proteins. We tagged both genomic loci with gfp and detected no expression of vglu-3 at any stage of development in any cell type of both C. elegans sexes. In contrast, vglu-2::gfp is dynamically expressed in a restricted set of distinct cell types. Within the nervous system, vglu-2::gfp is exclusively expressed in a single interneuron class, AIA, where it localizes to vesicular structures in the soma, but not along the axon, suggesting that VGLU-2 may not be involved in synaptic transport of glutamate. Nevertheless, vglu-2 mutants are partly defective in the function of the AIA neuron in olfactory behavior. Outside the nervous system, VGLU-2 is expressed in collagen secreting skin cells where VGLU-2 most prominently localizes to early endosomes, and to a lesser degree to apical clathrin-coated pits, the trans-Golgi network, and late endosomes. On early endosomes, VGLU-2 colocalizes most strongly with the recycling promoting factor SNX-1, a retromer component. Loss of vglu-2 affects the permeability of the collagen-containing cuticle of the worm, and based on the function of a vertebrate VGLUT1 protein in osteoclasts, we speculate that vglu-2 may have a role in collagen trafficking in the skin. We conclude that C. elegans SLC17A6/7/8 family members have diverse functions within and outside the nervous system.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Transporte Biológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Genoma , Humanos , Filogenia , Homologia de Sequência , Transmissão Sináptica , Proteínas Vesiculares de Transporte de Glutamato/genética
5.
Mol Syst Biol ; 1: 2005.0028, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16729063

RESUMO

Translating a graded morphogen distribution into tight response borders is central to all developmental processes. Yet, the molecular mechanisms generating such behavior are poorly understood. During patterning of the Drosophila embryonic ventral ectoderm, a graded mitogen-activated protein kinase (MAPK) activation is converted into an all-or-none degradation switch of the Yan transcriptional repressor. Replacing the cardinal phosphorylated amino acid of Yan by a phosphomimetic residue allowed its degradation in a MAPK-independent manner, consistent with Yan phosphorylation being the critical event in generating the switch. Several alternative threshold mechanisms that could, in principle, be realized by this phosphorylation, including first order, cooperativity, positive feedback and zero-order ultrasensitivity, were analyzed. We found that they can be distinguished by their kinetics and steady-state responses to Yan overexpression. In agreement with the predictions for zero-order kinetics, an increase in Yan levels did not shift the degradation border, but significantly elevated the time required to reach steady state. We propose that a reversible loop of Yan phosphorylation implements a zero-order ultrasensitivity-like threshold mechanism, with the capacity to form sharp thresholds that are independent of the level of Yan.


Assuntos
Padronização Corporal/fisiologia , Biologia Computacional , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Proteínas do Olho/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Repressoras/fisiologia , Substituição de Aminoácidos , Animais , Padronização Corporal/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ectoderma/fisiologia , Ectoderma/ultraestrutura , Embrião não Mamífero/fisiologia , Embrião não Mamífero/ultraestrutura , Ativação Enzimática , Fator de Crescimento Epidérmico/fisiologia , Receptores ErbB/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Cinética , Sistema de Sinalização das MAP Quinases , Matemática , Proteínas de Membrana/fisiologia , Morfogênese/genética , Morfogênese/fisiologia , Peptídeo Hidrolases/metabolismo , Fosforilação
6.
Cell Rep ; 9(3): 1122-34, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25437565

RESUMO

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that downregulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after 2 hr with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation.


Assuntos
Retroalimentação Fisiológica , Fosfatos/deficiência , Saccharomycetales/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Mutação/genética , Fenótipo , Fosfatos/farmacologia , Regulon/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
7.
Curr Biol ; 23(20): 2051-7, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24094854

RESUMO

Cells must rapidly adapt to changes in nutrient availability. In budding yeast, limitation of phosphate rapidly induces the expression of the Pho regulon genes [1-4]. This starvation program depends on the transcription factor Pho4, which translocates to the nucleus within minutes when cells are transferred to a low-phosphate medium [5]. Contrasting its rapid induction, we report that the Pho regulon can remain induced for dozens of generations in cells transferred back to high phosphate levels. For example, about 40% of the cells that were starved for 2 hr maintained PHO4-dependent expression for over eleven generations of growing in high phosphate. This commitment to activation of the Pho regulon depends on two feedback loops that reduce internal phosphate, one through induction of the PHM1-4 genes that increase phosphate storage in the vacuoles and the second by induction of SPL2, which reduces incoming flux by inhibiting low-affinity transporters. Noise in SPL2 expression allows stochastic repression of the Pho regulon in committed cells growing at high phosphate, as we demonstrate using a novel method, DAmP multiple copy array (DaMCA), that reduces intrinsic noise in gene expression while maintaining mean abundance. Commitment is an integral part of the dual-transporter motif that helps cells prepare for nutrient depletion.


Assuntos
Regulação da Expressão Gênica , Fosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Citometria de Fluxo , Microscopia Confocal , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Processos Estocásticos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Science ; 334(6061): 1408-12, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22158820

RESUMO

Cells use transporters of different affinities to regulate nutrient influx. When nutrients are depleted, low-affinity transporters are replaced by high-affinity ones. High-affinity transporters are helpful when concentrations of nutrients are low, but the advantage of reducing their abundance when nutrients are abundant is less clear. When we eliminated such reduced production of the Saccharomyces cerevisiae high-affinity transporters for phosphate and zinc, the elapsed time from the initiation of the starvation program until the lack of nutrients limited growth was shortened, and recovery from starvation was delayed. The latter phenotype was rescued by constitutive activation of the starvation program. Dual-transporter systems appear to prolong preparation for starvation and to facilitate subsequent recovery, which may optimize sensing of nutrient depletion by integrating internal and external information about nutrient availability.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Simportadores de Próton-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Cátions/genética , Meios de Cultura , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Homeostase , Fenótipo , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Simportadores de Próton-Fosfato/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Zinco/metabolismo
9.
FEBS Lett ; 583(24): 3974-8, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19878679

RESUMO

In the budding yeast, a large fraction of genes is coordinately regulated with growth rate. We argue that this correlation does not reflect a direct feedback from growth rate to gene expression. Rather, what appears to be a response to growth rate is dominated by environmental sensing. External parameters, such as nutrition or temperature, feed-forward to define gene expression pattern that is tuned to the evolutionary-predicted growth rate. While such a feed-forward strategy requires fine-tuning of signaling mechanisms, and is limited in the range of environments that can be monitored, it enables advanced preparation to physiological changes that predictably occur following environmental switching. The capacity to anticipate and prepare for changing conditions was probably a major selection force during yeast evolution.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Saccharomycetales/crescimento & desenvolvimento , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Mutação , Saccharomycetales/genética
10.
PLoS One ; 2(2): e250, 2007 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17327914

RESUMO

Cells must adjust their gene expression in order to compete in a constantly changing environment. Two alternative strategies could in principle ensure optimal coordination of gene expression with physiological requirements. First, characters of the internal physiological state, such as growth rate, metabolite levels, or energy availability, could be feedback to tune gene expression. Second, internal needs could be inferred from the external environment, using evolutionary-tuned signaling pathways. Coordination of ribosomal biogenesis with the requirement for protein synthesis is of particular importance, since cells devote a large fraction of their biosynthetic capacity for ribosomal biogenesis. To define the relative contribution of internal vs. external sensing to the regulation of ribosomal biogenesis gene expression in yeast, we subjected S. cerevisiae cells to conditions which decoupled the actual vs. environmentally-expected growth rate. Gene expression followed the environmental signal according to the expected, but not the actual, growth rate. Simultaneous monitoring of gene expression and growth rate in continuous cultures further confirmed that ribosome biogenesis genes responded rapidly to changes in the environments but were oblivious to longer-term changes in growth rate. Our results suggest that the capacity to anticipate and prepare for environmentally-mediated changes in cell growth presented a major selection force during yeast evolution.


Assuntos
Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Transcrição Gênica , Álcool Desidrogenase/biossíntese , Álcool Desidrogenase/genética , Meios de Cultura/farmacologia , Retroalimentação Fisiológica , Fermentação/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/fisiologia , Genes Fúngicos , Genes cdc , Micologia/métodos , Nucleotídeos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Fúngico/biossíntese , RNA Fúngico/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Ribossômico/biossíntese , RNA Ribossômico/genética , RNA de Transferência/biossíntese , RNA de Transferência/genética , Reprodução Assexuada , Ribossomos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa