Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 149(1): 146-58, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22464327

RESUMO

Lineage mapping has identified both proliferative and quiescent intestinal stem cells, but the molecular circuitry controlling stem cell quiescence is incompletely understood. By lineage mapping, we show Lrig1, a pan-ErbB inhibitor, marks predominately noncycling, long-lived stem cells that are located at the crypt base and that, upon injury, proliferate and divide to replenish damaged crypts. Transcriptome profiling of Lrig1(+) colonic stem cells differs markedly from the profiling of highly proliferative, Lgr5(+) colonic stem cells; genes upregulated in the Lrig1(+) population include those involved in cell cycle repression and response to oxidative damage. Loss of Apc in Lrig1(+) cells leads to intestinal adenomas, and genetic ablation of Lrig1 results in heightened ErbB1-3 expression and duodenal adenomas. These results shed light on the relationship between proliferative and quiescent intestinal stem cells and support a model in which intestinal stem cell quiescence is maintained by calibrated ErbB signaling with loss of a negative regulator predisposing to neoplasia.


Assuntos
Colo/metabolismo , Genes Supressores de Tumor , Intestino Delgado/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Colo/citologia , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Humanos , Neoplasias Intestinais/patologia , Intestino Delgado/citologia , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo
2.
Mol Psychiatry ; 26(9): 5239-5250, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33483695

RESUMO

Bipolar disorder (BD) is a serious mental illness with substantial common variant heritability. However, the role of rare coding variation in BD is not well established. We examined the protein-coding (exonic) sequences of 3,987 unrelated individuals with BD and 5,322 controls of predominantly European ancestry across four cohorts from the Bipolar Sequencing Consortium (BSC). We assessed the burden of rare, protein-altering, single nucleotide variants classified as pathogenic or likely pathogenic (P-LP) both exome-wide and within several groups of genes with phenotypic or biologic plausibility in BD. While we observed an increased burden of rare coding P-LP variants within 165 genes identified as BD GWAS regions in 3,987 BD cases (meta-analysis OR = 1.9, 95% CI = 1.3-2.8, one-sided p = 6.0 × 10-4), this enrichment did not replicate in an additional 9,929 BD cases and 14,018 controls (OR = 0.9, one-side p = 0.70). Although BD shares common variant heritability with schizophrenia, in the BSC sample we did not observe a significant enrichment of P-LP variants in SCZ GWAS genes, in two classes of neuronal synaptic genes (RBFOX2 and FMRP) associated with SCZ or in loss-of-function intolerant genes. In this study, the largest analysis of exonic variation in BD, individuals with BD do not carry a replicable enrichment of rare P-LP variants across the exome or in any of several groups of genes with biologic plausibility. Moreover, despite a strong shared susceptibility between BD and SCZ through common genetic variation, we do not observe an association between BD risk and rare P-LP coding variants in genes known to modulate risk for SCZ.


Assuntos
Transtorno Bipolar , Esquizofrenia , Transtorno Bipolar/genética , Exoma/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética
3.
Traffic ; 19(11): 879-892, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30095213

RESUMO

Deficiency in diacylglycerol acyltransferase (DGAT1) is a rare cause of neonatal diarrhea, without a known mechanism or in vitro model. A patient presenting at our institution at 7 weeks of life with failure to thrive and diarrhea was found by whole-exome sequencing to have a homozygous DGAT1 truncation mutation. Duodenal biopsies showed loss of DGAT1 and deficits in apical membrane transporters and junctional proteins in enterocytes. When placed on a very low-fat diet, the patient's diarrhea resolved with normalization of brush border transporter localization in endoscopic biopsies. DGAT1 knockdown in Caco2-BBe cells modeled the deficits in apical trafficking, with loss of apical DPPIV and junctional occludin. Elevation in cellular lipid levels, including diacylglycerol (DAG) and phospholipid metabolites of DAG, was documented by lipid analysis in DGAT1 knockdown cells. Culture of the DGAT1 knockdown cells in lipid-depleted media led to re-establishment of occludin and return of apical DPPIV. DGAT1 loss appears to elicit global changes in enterocyte polarized trafficking that could account for deficits in absorption seen in the patient. The in vitro modeling of this disease should allow for investigation of possible therapeutic targets.


Assuntos
Diacilglicerol O-Aciltransferase/genética , Diarreia Infantil/genética , Doenças do Sistema Digestório/genética , Células CACO-2 , Pré-Escolar , Diacilglicerol O-Aciltransferase/deficiência , Diacilglicerol O-Aciltransferase/metabolismo , Diarreia Infantil/patologia , Doenças do Sistema Digestório/patologia , Humanos , Lactente , Absorção Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Transporte Proteico
4.
J Infect Dis ; 219(11): 1786-1798, 2019 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-30566602

RESUMO

BACKGROUND: Adjuvant System 03 (AS03) markedly enhances responses to influenza A/H5N1 vaccines, but the mechanisms of this enhancement are incompletely understood. METHODS: Using ribonucleic acid sequencing on peripheral blood mononuclear cells (PBMCs) from AS03-adjuvanted and unadjuvanted inactivated H5N1 vaccine recipients, we identified differentially expressed genes, enriched pathways, and genes that correlated with serologic responses. We compared bulk PBMC findings with our previously published assessments of flow-sorted immune cell types. RESULTS: AS03-adjuvanted vaccine induced the strongest differential signals on day 1 postvaccination, activating multiple innate immune pathways including interferon and JAK-STAT signaling, Fcγ receptor (FcγR)-mediated phagocytosis, and antigen processing and presentation. Changes in signal transduction and immunoglobulin genes predicted peak hemagglutinin inhibition (HAI) titers. Compared with individual immune cell types, activated PBMC genes and pathways were most similar to innate immune cells. However, several pathways were unique to PBMCs, and several pathways identified in individual cell types were absent in PBMCs. CONCLUSIONS: Transcriptomic analysis of PBMCs after AS03-adjuvanted H5N1 vaccination revealed early activation of innate immune signaling, including a 5- to 8-fold upregulation of FcγR1A/1B/1C genes. Several early gene responses were correlated with HAI titer, indicating links with the adaptive immune response. Although PBMCs and cell-specific results shared key innate immune signals, unique signals were identified by both approaches.


Assuntos
Imunidade Inata , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Esqualeno/imunologia , alfa-Tocoferol/imunologia , Imunidade Adaptativa , Adjuvantes Imunológicos/uso terapêutico , Adulto , Método Duplo-Cego , Combinação de Medicamentos , Perfilação da Expressão Gênica , Humanos , Influenza Humana/imunologia , Influenza Humana/virologia , Leucócitos/imunologia , Polissorbatos , Transdução de Sinais , Adulto Jovem
5.
J Biol Chem ; 293(27): 10810-10824, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29769320

RESUMO

It is estimated that ∼1% of the world's population has intellectual disability, with males affected more often than females. OGT is an X-linked gene encoding for the enzyme O-GlcNAc transferase (OGT), which carries out the reversible addition of N-acetylglucosamine (GlcNAc) to Ser/Thr residues of its intracellular substrates. Three missense mutations in the tetratricopeptide (TPR) repeats of OGT have recently been reported to cause X-linked intellectual disability (XLID). Here, we report the discovery of two additional novel missense mutations (c.775 G>A, p.A259T, and c.1016 A>G, p.E339G) in the TPR domain of OGT that segregate with XLID in affected families. Characterization of all five of these XLID missense variants of OGT demonstrates modest declines in thermodynamic stability and/or activities of the variants. We engineered each of the mutations into a male human embryonic stem cell line using CRISPR/Cas9. Investigation of the global O-GlcNAc profile as well as OGT and O-GlcNAc hydrolase levels by Western blotting showed no gross changes in steady-state levels in the engineered lines. However, analyses of the differential transcriptomes of the OGT variant-expressing stem cells revealed shared deregulation of genes involved in cell fate determination and liver X receptor/retinoid X receptor signaling, which has been implicated in neuronal development. Thus, here we reveal two additional mutations encoding residues in the TPR regions of OGT that appear causal for XLID and provide evidence that the relatively stable and active TPR variants may share a common, unelucidated mechanism of altering gene expression profiles in human embryonic stem cells.


Assuntos
Linhagem da Célula , Células-Tronco Embrionárias/metabolismo , Genes Ligados ao Cromossomo X , Marcadores Genéticos , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , N-Acetilglucosaminiltransferases/genética , Diferenciação Celular , Criança , Cristalografia por Raios X , Células-Tronco Embrionárias/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Recém-Nascido , Deficiência Intelectual/enzimologia , Deficiência Intelectual/patologia , Masculino , N-Acetilglucosaminiltransferases/química , N-Acetilglucosaminiltransferases/metabolismo , Linhagem , Conformação Proteica , Transdução de Sinais
6.
Annu Rev Genomics Hum Genet ; 17: 95-115, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27362342

RESUMO

The term next-generation sequencing is almost a decade old, but it remains the colloquial way to describe highly parallel or high-output sequencing methods that produce data at or beyond the genome scale. Since the introduction of these technologies, the number of applications and methods that leverage the power of genome-scale sequencing has increased at an exponential pace. This review highlights recent concepts, technologies, and methods from next-generation sequencing to illustrate the breadth and depth of the applications and research areas that are driving progress in genomics.


Assuntos
Genoma Humano/genética , Genômica/tendências , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA/métodos
7.
Gut ; 67(5): 805-817, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28196875

RESUMO

OBJECTIVE: Alternatively activated macrophages (M2) are associated with the progression of spasmolytic polypeptide-expressing metaplasia (SPEM) in the stomach. However, the precise mechanism(s) and critical mediators that induce SPEM are unknown. DESIGN: To determine candidate genes important in these processes, macrophages from the stomach corpus of mice with SPEM (DMP-777-treated) or advanced SPEM (L635-treated) were isolated and RNA sequenced. Effects on metaplasia development after acute parietal cell loss induced by L635 were evaluated in interleukin (IL)-33, IL-33 receptor (ST2) and IL-13 knockout (KO) mice. RESULTS: Profiling of metaplasia-associated macrophages in the stomach identified an M2a-polarised macrophage population. Expression of IL-33 was significantly upregulated in macrophages associated with advanced SPEM. L635 induced metaplasia in the stomachs of wild-type mice, but not in the stomachs of IL-33 and ST2 KO mice. While IL-5 and IL-9 were not required for metaplasia induction, IL-13 KO mice did not develop metaplasia in response to L635. Administration of IL-13 to ST2 KO mice re-established the induction of metaplasia following acute parietal cell loss. CONCLUSIONS: Metaplasia induction and macrophage polarisation after parietal cell loss is coordinated through a cytokine signalling network of IL-33 and IL-13, linking a combined response to injury by both intrinsic mucosal mechanisms and infiltrating M2 macrophages.


Assuntos
Interleucina-13/metabolismo , Interleucina-33/metabolismo , Macrófagos/metabolismo , Metaplasia/metabolismo , Estômago/citologia , Animais , Citometria de Fluxo , Mucosa Gástrica/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-13/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Parietais Gástricas/citologia , Peptídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interleucina/genética , Transdução de Sinais
8.
Genet Med ; 20(12): 1635-1643, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29790872

RESUMO

PURPOSE: Clinically relevant secondary variants were identified in parents enrolled with a child with developmental delay and intellectual disability. METHODS: Exome/genome sequencing and analysis of 789 "unaffected" parents was performed. RESULTS: Pathogenic/likely pathogenic variants were identified in 21 genes within 25 individuals (3.2%), with 11 (1.4%) participants harboring variation in a gene defined as clinically actionable by the American College of Medical Genetics and Genomics. These 25 individuals self-reported either relevant clinical diagnoses (5); relevant family history or symptoms (13); or no relevant family history, symptoms, or clinical diagnoses (7). A limited carrier screen was performed yielding 15 variants in 48 (6.1%) parents. Parents were also analyzed as mate pairs (n = 365) to identify cases in which both parents were carriers for the same recessive disease, yielding three such cases (0.8%), two of which had children with the relevant recessive disease. Four participants had two findings (one carrier and one noncarrier variant). In total, 71 of the 789 enrolled parents (9.0%) received secondary findings. CONCLUSION: We provide an overview of the rates and types of clinically relevant secondary findings, which may be useful in the design and implementation of research and clinical sequencing efforts to identify such findings.


Assuntos
Sequenciamento do Exoma , Exoma/genética , Doenças Genéticas Inatas/genética , Testes Genéticos , Adulto , Mapeamento Cromossômico , Feminino , Triagem de Portadores Genéticos , Doenças Genéticas Inatas/classificação , Doenças Genéticas Inatas/fisiopatologia , Variação Genética , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Pais , Sequenciamento Completo do Genoma
9.
Nature ; 485(7397): 242-5, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22495311

RESUMO

Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified. To identify further genetic risk factors, here we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n = 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant, and the overall rate of mutation is only modestly higher than the expected rate. In contrast, the proteins encoded by genes that harboured de novo missense or nonsense mutations showed a higher degree of connectivity among themselves and to previous ASD genes as indexed by protein-protein interaction screens. The small increase in the rate of de novo events, when taken together with the protein interaction results, are consistent with an important but limited role for de novo point mutations in ASD, similar to that documented for de novo copy number variants. Genetic models incorporating these data indicate that most of the observed de novo events are unconnected to ASD; those that do confer risk are distributed across many genes and are incompletely penetrant (that is, not necessarily sufficient for disease). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5- to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case-control study provide strong evidence in favour of CHD8 and KATNAL2 as genuine autism risk factors.


Assuntos
Transtorno Autístico/genética , Proteínas de Ligação a DNA/genética , Éxons/genética , Predisposição Genética para Doença/genética , Mutação/genética , Fatores de Transcrição/genética , Estudos de Casos e Controles , Exoma/genética , Saúde da Família , Humanos , Modelos Genéticos , Herança Multifatorial/genética , Fenótipo , Distribuição de Poisson , Mapas de Interação de Proteínas
10.
Development ; 141(7): 1480-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24574008

RESUMO

Neurovascular alignment is a common anatomical feature of organs, but the mechanisms leading to this arrangement are incompletely understood. Here, we show that vascular endothelial growth factor (VEGF) signaling profoundly affects both vascularization and innervation of the pancreatic islet. In mature islets, nerves are closely associated with capillaries, but the islet vascularization process during embryonic organogenesis significantly precedes islet innervation. Although a simple neuronal meshwork interconnects the developing islet clusters as they begin to form at E14.5, the substantial ingrowth of nerve fibers into islets occurs postnatally, when islet vascularization is already complete. Using genetic mouse models, we demonstrate that VEGF regulates islet innervation indirectly through its effects on intra-islet endothelial cells. Our data indicate that formation of a VEGF-directed, intra-islet vascular plexus is required for development of islet innervation, and that VEGF-induced islet hypervascularization leads to increased nerve fiber ingrowth. Transcriptome analysis of hypervascularized islets revealed an increased expression of extracellular matrix components and axon guidance molecules, with these transcripts being enriched in the islet-derived endothelial cell population. We propose a mechanism for coordinated neurovascular development within pancreatic islets, in which endocrine cell-derived VEGF directs the patterning of intra-islet capillaries during embryogenesis, forming a scaffold for the postnatal ingrowth of essential autonomic nerve fibers.


Assuntos
Vasos Sanguíneos/fisiologia , Comunicação Celular/genética , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/inervação , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Vasos Sanguíneos/embriologia , Células Cultivadas , Embrião de Mamíferos , Endotélio Vascular/embriologia , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Feminino , Ilhotas Pancreáticas/embriologia , Camundongos , Camundongos Transgênicos , Fator A de Crescimento do Endotélio Vascular/genética
12.
Biol Reprod ; 94(2): 46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26632611

RESUMO

The lactocrine hypothesis for maternal programming of neonatal development was proposed to describe a mechanism through which milk-borne bioactive factors, delivered from mother to nursing offspring, could affect development of tissues, including the uterus. Porcine uterine development, initiated before birth, is completed postnatally. However, age- and lactocrine-sensitive elements of the neonatal porcine uterine developmental program are undefined. Here, effects of age and nursing on the uterine transcriptome for 48 h from birth (Postnatal Day [PND] = 0) were identified using RNA sequencing (RNAseq). Uterine tissues were obtained from neonatal gilts (n = 4 per group) within 1 h of birth and before feeding (PND 0), or 48 h after nursing ad libitum (PND 2N) or feeding a commercial milk replacer (PND 2R). RNAseq analysis revealed differentially expressed genes (DEGs) associated with both age (PND 2N vs. PND 0; 3283 DEGs) and nursing on PND 2 (PND 2N vs PND 2R; 896 DEGs). Expression of selected uterine genes was validated using quantitative real-time PCR. Bioinformatic analyses revealed multiple biological processes enriched in response to both age and nursing, including cell adhesion, morphogenesis, and cell-cell signaling. Age-sensitive pathways also included estrogen receptor-alpha and hedgehog signaling cascades. Lactocrine-sensitive processes in nursed gilts included those involved in response to wounding, the plasminogen activator network and coagulation. Overall, RNAseq analysis revealed comprehensive age- and nursing-related transcriptomic differences in the neonatal porcine uterus and identified novel pathways and biological processes regulating uterine development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Lactação/metabolismo , Transcriptoma , Útero/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Feminino , Lactação/genética , Transdução de Sinais , Suínos
13.
N Engl J Med ; 366(17): 1586-95, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22436048

RESUMO

BACKGROUND: Familial diarrhea disorders are, in most cases, severe and caused by recessive mutations. We describe the cause of a novel dominant disease in 32 members of a Norwegian family. The affected members have chronic diarrhea that is of early onset, is relatively mild, and is associated with increased susceptibility to inflammatory bowel disease, small-bowel obstruction, and esophagitis. METHODS: We used linkage analysis, based on arrays with single-nucleotide polymorphisms, to identify a candidate region on chromosome 12 and then sequenced GUCY2C, encoding guanylate cyclase C (GC-C), an intestinal receptor for bacterial heat-stable enterotoxins. We performed exome sequencing of the entire candidate region from three affected family members, to exclude the possibility that mutations in genes other than GUCY2C could cause or contribute to susceptibility to the disease. We carried out functional studies of mutant GC-C using HEK293T cells. RESULTS: We identified a heterozygous missense mutation (c.2519G→T) in GUCY2C in all affected family members and observed no other rare variants in the exons of genes in the candidate region. Exposure of the mutant receptor to its ligands resulted in markedly increased production of cyclic guanosine monophosphate (cGMP). This may cause hyperactivation of the cystic fibrosis transmembrane regulator (CFTR), leading to increased chloride and water secretion from the enterocytes, and may thus explain the chronic diarrhea in the affected family members. CONCLUSIONS: Increased GC-C signaling disturbs normal bowel function and appears to have a proinflammatory effect, either through increased chloride secretion or additional effects of elevated cellular cGMP. Further investigation of the relevance of genetic variants affecting the GC-C-CFTR pathway to conditions such as Crohn's disease is warranted. (Funded by Helse Vest [Western Norway Regional Health Authority] and the Department of Science and Technology, Government of India.).


Assuntos
Diarreia/genética , Mutação de Sentido Incorreto , Receptores Acoplados a Guanilato Ciclase/genética , Receptores de Peptídeos/genética , Doença Crônica , GMP Cíclico/biossíntese , Diarreia/metabolismo , Feminino , Ligação Genética , Heterozigoto , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Receptores de Enterotoxina , Receptores Acoplados a Guanilato Ciclase/metabolismo , Receptores de Peptídeos/metabolismo , Transdução de Sinais
14.
Biochem Biophys Rep ; 28: 101106, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34458596

RESUMO

Delay in cancer diagnosis often results in metastasis and an inability to successfully treat the tumor. The use of broadly cancer-specific biomarkers at an early stage may improve cancer treatment and staging. This study has explored circulatory exosomal miRNAs as potential diagnostic biomarkers to identify cancer patients. Secretory exosomal miRNAs were isolated from 13 canine cancer cell lines (lymphoma, mast cell tumor, histiocytic cell line, osteosarcoma, melanoma, and breast tumor) and were sequenced by Next-Generation sequencing (NGS). We have identified 6 miRNAs (cfa-miR-9, -1841, -1306, -345, -132, and -26b) by NGS that were elevated in all cancer cell types. The miRNAs identified by NGS were then examined by Q-RT-PCR. The PCR data demonstrated similar expression patterns to those seen with NGS but provided fold differences that were much lower than those seen for NGS. Cfa-miR-9 was found to be the most consistently elevated miRNA in NGS and PCR, making it the most likely miRNA to prove diagnostic. In this study, we have demonstrated that it is possible to identify exosomal miRNAs with elevated secretion across multiple tumor types that could be used as circulatory diagnostic biomarkers for liquid biopsy in the future.

15.
NPJ Regen Med ; 6(1): 22, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824346

RESUMO

Endogenous ß cell regeneration could alleviate diabetes, but proliferative stimuli within the islet microenvironment are incompletely understood. We previously found that ß cell recovery following hypervascularization-induced ß cell loss involves interactions with endothelial cells (ECs) and macrophages (MΦs). Here we show that proliferative ECs modulate MΦ infiltration and phenotype during ß cell loss, and recruited MΦs are essential for ß cell recovery. Furthermore, VEGFR2 inactivation in quiescent ECs accelerates islet vascular regression during ß cell recovery and leads to increased ß cell proliferation without changes in MΦ phenotype or number. Transcriptome analysis of ß cells, ECs, and MΦs reveals that ß cell proliferation coincides with elevated expression of extracellular matrix remodeling molecules and growth factors likely driving activation of proliferative signaling pathways in ß cells. Collectively, these findings suggest a new ß cell regeneration paradigm whereby coordinated interactions between intra-islet MΦs, ECs, and extracellular matrix mediate ß cell self-renewal.

16.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34428183

RESUMO

Islet-enriched transcription factors (TFs) exert broad control over cellular processes in pancreatic α and ß cells, and changes in their expression are associated with developmental state and diabetes. However, the implications of heterogeneity in TF expression across islet cell populations are not well understood. To define this TF heterogeneity and its consequences for cellular function, we profiled more than 40,000 cells from normal human islets by single-cell RNA-Seq and stratified α and ß cells based on combinatorial TF expression. Subpopulations of islet cells coexpressing ARX/MAFB (α cells) and MAFA/MAFB (ß cells) exhibited greater expression of key genes related to glucose sensing and hormone secretion relative to subpopulations expressing only one or neither TF. Moreover, all subpopulations were identified in native pancreatic tissue from multiple donors. By Patch-Seq, MAFA/MAFB-coexpressing ß cells showed enhanced electrophysiological activity. Thus, these results indicate that combinatorial TF expression in islet α and ß cells predicts highly functional, mature subpopulations.


Assuntos
Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adulto , Fenômenos Eletrofisiológicos , Expressão Gênica , Células Secretoras de Glucagon/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Fator de Transcrição MafB/genética , Fator de Transcrição MafB/metabolismo , Pessoa de Meia-Idade , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma , Adulto Jovem
17.
Genome Med ; 13(1): 153, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34645491

RESUMO

BACKGROUND: Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretation by integrating predictive methods with the growing knowledge of genetic disease. Here we assess the diagnostic performance of Fabric GEM, a new, AI-based, clinical decision support tool for expediting genome interpretation. METHODS: We benchmarked GEM in a retrospective cohort of 119 probands, mostly NICU infants, diagnosed with rare genetic diseases, who received whole-genome or whole-exome sequencing (WGS, WES). We replicated our analyses in a separate cohort of 60 cases collected from five academic medical centers. For comparison, we also analyzed these cases with current state-of-the-art variant prioritization tools. Included in the comparisons were trio, duo, and singleton cases. Variants underpinning diagnoses spanned diverse modes of inheritance and types, including structural variants (SVs). Patient phenotypes were extracted from clinical notes by two means: manually and using an automated clinical natural language processing (CNLP) tool. Finally, 14 previously unsolved cases were reanalyzed. RESULTS: GEM ranked over 90% of the causal genes among the top or second candidate and prioritized for review a median of 3 candidate genes per case, using either manually curated or CNLP-derived phenotype descriptions. Ranking of trios and duos was unchanged when analyzed as singletons. In 17 of 20 cases with diagnostic SVs, GEM identified the causal SVs as the top candidate and in 19/20 within the top five, irrespective of whether SV calls were provided or inferred ab initio by GEM using its own internal SV detection algorithm. GEM showed similar performance in absence of parental genotypes. Analysis of 14 previously unsolved cases resulted in a novel finding for one case, candidates ultimately not advanced upon manual review for 3 cases, and no new findings for 10 cases. CONCLUSIONS: GEM enabled diagnostic interpretation inclusive of all variant types through automated nomination of a very short list of candidate genes and disorders for final review and reporting. In combination with deep phenotyping by CNLP, GEM enables substantial automation of genetic disease diagnosis, potentially decreasing cost and expediting case review.


Assuntos
Inteligência Artificial , Doenças Raras/genética , Bases de Dados Genéticas , Feminino , Genômica/métodos , Genótipo , Humanos , Masculino , Fenótipo , Estudos Retrospectivos , Sequenciamento do Exoma
18.
Nature ; 427(6973): 461-5, 2004 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-14749836

RESUMO

A sudden increase in permeability of the inner mitochondrial membrane, the so-called mitochondrial permeability transition, is a common feature of apoptosis and is mediated by the mitochondrial permeability transition pore (mtPTP). It is thought that the mtPTP is a protein complex formed by the voltage-dependent anion channel, members of the pro- and anti-apoptotic BAX-BCL2 protein family, cyclophilin D, and the adenine nucleotide (ADP/ATP) translocators (ANTs). The latter exchange mitochondrial ATP for cytosolic ADP and have been implicated in cell death. To investigate the role of the ANTs in the mtPTP, we genetically inactivated the two isoforms of ANT in mouse liver and analysed mtPTP activation in isolated mitochondria and the induction of cell death in hepatocytes. Mitochondria lacking ANT could still be induced to undergo permeability transition, resulting in release of cytochrome c. However, more Ca2+ than usual was required to activate the mtPTP, and the pore could no longer be regulated by ANT ligands. Moreover, hepatocytes without ANT remained competent to respond to various initiators of cell death. Therefore, ANTs are non-essential structural components of the mtPTP, although they do contribute to its regulation.


Assuntos
Translocador 1 do Nucleotídeo Adenina/deficiência , Translocador 1 do Nucleotídeo Adenina/metabolismo , Translocador 2 do Nucleotídeo Adenina/deficiência , Translocador 2 do Nucleotídeo Adenina/metabolismo , Canais Iônicos/metabolismo , Translocador 1 do Nucleotídeo Adenina/genética , Translocador 2 do Nucleotídeo Adenina/genética , Animais , Morte Celular , Deleção de Genes , Hepatócitos/citologia , Hepatócitos/metabolismo , Isoenzimas/deficiência , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial
19.
NPJ Genom Med ; 5: 14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133155

RESUMO

The human sperm is one of the smallest cells in the body, but also one of the most important, as it serves as the entire paternal genetic contribution to a child. Investigating RNA and mutations in sperm is especially relevant for diseases such as autism spectrum disorders (ASD), which have been correlated with advanced paternal age. Historically, studies have focused on the assessment of bulk sperm, wherein millions of individual sperm are present and only high-frequency variants can be detected. Using 10× Chromium single-cell sequencing technology, we assessed the transcriptome from >65,000 single spermatozoa across six sperm donors (scSperm-RNA-seq), including two who fathered multiple children with ASD and four fathers of neurotypical children. Using RNA-seq methods for differential expression and variant analysis, we found clusters of sperm mutations in each donor that are indicative of the sperm being produced by different stem cell pools. Finally, we have shown that genetic variations can be found in single sperm.

20.
Mol Ther Methods Clin Dev ; 19: 162-173, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33209959

RESUMO

Novel treatments for Huntington's disease (HD), a progressive neurodegenerative disorder, include selective targeting of the mutant allele of the huntingtin gene (mHTT) carrying the abnormally expanded disease-causing cytosine-adenine-guanine (CAG) repeat. WVE-120101 and WVE-120102 are investigational stereopure antisense oligonucleotides that enable selective suppression of mHTT by targeting single-nucleotide polymorphisms (SNPs) that are in haplotype phase with the CAG repeat expansion. Recently developed long-read sequencing technologies can capture CAG expansions and distant SNPs of interest and potentially facilitate haplotype-based identification of patients for clinical trials of oligonucleotide therapies. However, improved methods are needed to phase SNPs with CAG repeat expansions directly and reliably without need for familial genotype/haplotype data. Our haplotype phasing method uses single-molecule real-time sequencing and a custom algorithm to determine with confidence bases at SNPs on mutant alleles, even without familial data. Herein, we summarize this methodology and validate the approach using patient-derived samples with known phasing results. Comparison of experimentally measured CAG repeat lengths, heterozygosity, and phasing with previously determined results showed improved performance. Our methodology enables the haplotype phasing of SNPs of interest and the disease-causing, expanded CAG repeat of the huntingtin gene, enabling accurate identification of patients with HD eligible for allele-selective clinical studies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa