Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 380(2216): 20210060, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34923845

RESUMO

We survey the prospective sensitivities of terrestrial and space-borne atom interferometers to gravitational waves generated by cosmological and astrophysical sources, and to ultralight dark matter. We discuss the backgrounds from gravitational gradient noise in terrestrial detectors, and also binary pulsar and asteroid backgrounds in space-borne detectors. We compare the sensitivities of LIGO and LISA with those of the 100 m and 1 km stages of the AION terrestrial AI project, as well as two options for the proposed AEDGE AI space mission with cold atom clouds either inside or outside the spacecraft, considering as possible sources the mergers of black holes and neutron stars, supernovae, phase transitions in the early Universe, cosmic strings and quantum fluctuations in the early Universe that could have generated primordial black holes. We also review the capabilities of AION and AEDGE for detecting coherent waves of ultralight scalar dark matter. AION-REPORT/2021-04 KCL-PH-TH/2021-61, CERN-TH-2021-116 This article is part of the theme issue 'Quantum technologies in particle physics'.

2.
Phys Rev Lett ; 126(4): 041304, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33576656

RESUMO

Pulsar timing data used to provide upper limits on a possible stochastic gravitational wave background (SGWB). However, the NANOGrav Collaboration has recently reported strong evidence for a stochastic common-spectrum process, which we interpret as a SGWB in the framework of cosmic strings. The possible NANOGrav signal would correspond to a string tension Gµ∈(4×10^{-11},10^{-10}) at the 68% confidence level, with a different frequency dependence from supermassive black hole mergers. The SGWB produced by cosmic strings with such values of Gµ would be beyond the reach of LIGO, but could be measured by other planned and proposed detectors such as SKA, LISA, TianQin, AION-1 km, AEDGE, Einstein Telescope, and Cosmic Explorer.

3.
Phys Rev Lett ; 125(21): 211302, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33274964

RESUMO

A standard expectation of primordial cosmological inflation is that it dilutes all relics created before its onset to unobservable levels. We present a counterexample to this expectation by demonstrating that a network of cosmic strings diluted by inflation can regrow to a level that is potentially observable today in gravitational waves (GWs). In contrast to undiluted cosmic strings, whose primary GW signals are typically in the form of a stochastic GW background, the leading signal from a diluted cosmic string network can be distinctive bursts of GWs within the sensitivity reach of current and future GW observatories.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa