Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Genet ; 16(6): e1008864, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32584820

RESUMO

Cytosine methylation is an ancient epigenetic modification yet its function and extent within genomes is highly variable across eukaryotes. In mammals, methylation controls transposable elements and regulates the promoters of genes. In insects, DNA methylation is generally restricted to a small subset of transcribed genes, with both intergenic regions and transposable elements (TEs) depleted of methylation. The evolutionary origin and the function of these methylation patterns are poorly understood. Here we characterise the evolution of DNA methylation across the arthropod phylum. While the common ancestor of the arthropods had low levels of TE methylation and did not methylate promoters, both of these functions have evolved independently in centipedes and mealybugs. In contrast, methylation of the exons of a subset of transcribed genes is ancestral and widely conserved across the phylum, but has been lost in specific lineages. A similar set of genes is methylated in all species that retained exon-enriched methylation. We show that these genes have characteristic patterns of expression correlating to broad transcription initiation sites and well-positioned nucleosomes, providing new insights into potential mechanisms driving methylation patterns over hundreds of millions of years.


Assuntos
Artrópodes/genética , Metilação de DNA , Epigênese Genética , Evolução Molecular , Animais , Ilhas de CpG/genética , Elementos de DNA Transponíveis/genética , Éxons/genética , Filogenia , Regiões Promotoras Genéticas/genética
2.
Nucleic Acids Res ; 42(14): 9436-46, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25053841

RESUMO

Arboviruses are transmitted by distantly related arthropod vectors such as mosquitoes (class Insecta) and ticks (class Arachnida). RNA interference (RNAi) is the major antiviral mechanism in arthropods against arboviruses. Unlike in mosquitoes, tick antiviral RNAi is not understood, although this information is important to compare arbovirus/host interactions in different classes of arbovirus vectos. Using an Ixodes scapularis-derived cell line, key Argonaute proteins involved in RNAi and the response against tick-borne Langat virus (Flaviviridae) replication were identified and phylogenetic relationships characterized. Analysis of small RNAs in infected cells showed the production of virus-derived small interfering RNAs (viRNAs), which are key molecules of the antiviral RNAi response. Importantly, viRNAs were longer (22 nucleotides) than those from other arbovirus vectors and mapped at highest frequency to the termini of the viral genome, as opposed to mosquito-borne flaviviruses. Moreover, tick-borne flaviviruses expressed subgenomic flavivirus RNAs that interfere with tick RNAi. Our results characterize the antiviral RNAi response in tick cells including phylogenetic analysis of genes encoding antiviral proteins, and viral interference with this pathway. This shows important differences in antiviral RNAi between the two major classes of arbovirus vectors, and our data broadens our understanding of arthropod antiviral RNAi.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/genética , Ixodes/genética , Ixodes/virologia , Interferência de RNA , Animais , Proteínas Argonautas/fisiologia , Linhagem Celular , RNA Interferente Pequeno/química , Pequeno RNA não Traduzido/química , RNA Viral/química , Ribonuclease III/fisiologia
3.
Circ Genom Precis Med ; 13(6): e003030, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33125268

RESUMO

BACKGROUND: Spontaneous coronary artery dissection (SCAD) occurs when an epicardial coronary artery is narrowed or occluded by an intramural hematoma. SCAD mainly affects women and is associated with pregnancy and systemic arteriopathies, particularly fibromuscular dysplasia. Variants in several genes, such as those causing connective tissue disorders, have been implicated; however, the genetic architecture is poorly understood. Here, we aim to better understand the diagnostic yield of rare variant genetic testing among a cohort of SCAD survivors and to identify genes or gene sets that have a significant enrichment of rare variants. METHODS: We sequenced a cohort of 384 SCAD survivors from the United Kingdom, alongside 13 722 UK Biobank controls and a validation cohort of 92 SCAD survivors. We performed a research diagnostic screen for pathogenic variants and exome-wide and gene-set rare variant collapsing analyses. RESULTS: The majority of patients within both cohorts are female, 29% of the study cohort and 14% validation cohort have a remote arteriopathy. Four cases across the 2 cohorts had a diagnosed connective tissue disorder. We identified pathogenic or likely pathogenic variants in 7 genes (PKD1, COL3A1, SMAD3, TGFB2, LOX, MYLK, and YY1AP1) in 14/384 cases in the study cohort and in 1/92 cases in the validation cohort. In our rare variant collapsing analysis, PKD1 was the highest-ranked gene, and several functionally plausible genes were enriched for rare variants, although no gene achieved study-wide statistical significance. Gene-set enrichment analysis suggested a role for additional genes involved in renal function. CONCLUSIONS: By studying the largest sequenced cohort of SCAD survivors, we demonstrate that, based on current knowledge, only a small proportion have a pathogenic variant that could explain their disease. Our findings strengthen the overlap between SCAD and renal and connective tissue disorders, and we highlight several new genes for future validation.


Assuntos
Anomalias dos Vasos Coronários/genética , Sequenciamento do Exoma , Variação Genética , Genoma Humano , Doenças Vasculares/congênito , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Reino Unido , Doenças Vasculares/genética , Adulto Jovem
4.
Nat Ecol Evol ; 2(1): 174-181, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29203920

RESUMO

In animals, small RNA molecules termed PIWI-interacting RNAs (piRNAs) silence transposable elements (TEs), protecting the germline from genomic instability and mutation. piRNAs have been detected in the soma in a few animals, but these are believed to be specific adaptations of individual species. Here, we report that somatic piRNAs were probably present in the ancestral arthropod more than 500 million years ago. Analysis of 20 species across the arthropod phylum suggests that somatic piRNAs targeting TEs and messenger RNAs are common among arthropods. The presence of an RNA-dependent RNA polymerase in chelicerates (horseshoe crabs, spiders and scorpions) suggests that arthropods originally used a plant-like RNA interference mechanism to silence TEs. Our results call into question the view that the ancestral role of the piRNA pathway was to protect the germline and demonstrate that small RNA silencing pathways have been repurposed for both somatic and germline functions throughout arthropod evolution.


Assuntos
Artrópodes/genética , Elementos de DNA Transponíveis/fisiologia , Evolução Molecular , RNA Mensageiro/fisiologia , RNA Interferente Pequeno/genética , Animais , RNA Interferente Pequeno/metabolismo
5.
Genome Biol Evol ; 8(3): 507-18, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26868596

RESUMO

Genetic studies of Drosophila melanogaster have provided a paradigm for RNA interference (RNAi) in arthropods, in which the microRNA and antiviral pathways are each mediated by a single Argonaute (Ago1 and Ago2) and germline suppression of transposable elements is mediated by a trio of Piwi-subfamily Argonaute proteins (Ago3, Aub, and Piwi). Without a suitable evolutionary context, deviations from this can be interpreted as derived or idiosyncratic. Here we analyze the evolution of Argonaute genes across the genomes and transcriptomes of 86 Dipteran species, showing that variation in copy number can occur rapidly, and that there is constant flux in some RNAi mechanisms. The lability of the RNAi pathways is illustrated by the divergence of Aub and Piwi (182-156 Ma), independent origins of multiple Piwi-family genes in Aedes mosquitoes (less than 25Ma), and the recent duplications of Ago2 and Ago3 in the tsetse fly Glossina morsitans. In each case the tissue specificity of these genes has altered, suggesting functional divergence or innovation, and consistent with the action of dynamic selection pressures across the Argonaute gene family. We find there are large differences in evolutionary rates and gene turnover between pathways, and that paralogs of Ago2, Ago3, and Piwi/Aub show contrasting rates of evolution after duplication. This suggests that Argonautes undergo frequent evolutionary expansions that facilitate functional divergence.


Assuntos
Proteínas Argonautas/genética , Proteínas de Drosophila/genética , Evolução Molecular , Fatores de Iniciação de Peptídeos/genética , Aedes/genética , Animais , Drosophila melanogaster/genética , Variação Genética , Genoma de Inseto , Filogenia
6.
Evol Bioinform Online ; 12(Suppl 2): 13-25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375356

RESUMO

Drosophila melanogaster is an important laboratory model for studies of antiviral immunity in invertebrates, and Drosophila species provide a valuable system to study virus host range and host switching. Here, we use metagenomic RNA sequencing of about 1600 adult flies to discover 25 new RNA viruses associated with six different drosophilid hosts in the wild. We also provide a comprehensive listing of viruses previously reported from the Drosophilidae. The new viruses include Iflaviruses, Rhabdoviruses, Nodaviruses, and Reoviruses, and members of unclassified lineages distantly related to Negeviruses, Sobemoviruses, Poleroviruses, Flaviviridae, and Tombusviridae. Among these are close relatives of Drosophila X virus and Flock House virus, which we find in association with wild Drosophila immigrans. These two viruses are widely used in experimental studies but have not been previously reported to naturally infect Drosophila. Although we detect no new DNA viruses, in D. immigrans and Drosophila obscura, we identify sequences very closely related to Armadillidium vulgare iridescent virus (Invertebrate iridescent virus 31), bringing the total number of DNA viruses found in the Drosophilidae to three.

7.
Genetics ; 204(2): 757-769, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27535930

RESUMO

Argonaute2 (Ago2) is a rapidly evolving nuclease in the Drosophila melanogaster RNA interference (RNAi) pathway that targets viruses and transposable elements in somatic tissues. Here we reconstruct the history of Ago2 duplications across the D. obscura group and use patterns of gene expression to infer new functional specialization. We show that some duplications are old, shared by the entire species group, and that losses may be common, including previously undetected losses in the lineage leading to D. pseudoobscura We find that while the original (syntenic) gene copy has generally retained the ancestral ubiquitous expression pattern, most of the novel Ago2 paralogs have independently specialized to testis-specific expression. Using population genetic analyses, we show that most testis-specific paralogs have significantly lower genetic diversity than the genome-wide average. This suggests recent positive selection in three different species, and model-based analyses provide strong evidence of recent hard selective sweeps in or near four of the six D. pseudoobscura Ago2 paralogs. We speculate that the repeated evolution of testis specificity in obscura group Ago2 genes, combined with their dynamic turnover and strong signatures of adaptive evolution, may be associated with highly derived roles in the suppression of transposable elements or meiotic drive. Our study highlights the lability of RNAi pathways, even within well-studied groups such as Drosophila, and suggests that strong selection may act quickly after duplication in RNAi pathways, potentially giving rise to new and unknown RNAi functions in nonmodel species.


Assuntos
Proteínas Argonautas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolução Molecular , Seleção Genética/genética , Animais , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/crescimento & desenvolvimento , Duplicação Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento , Genética Populacional , Genoma de Inseto , Masculino , Especificidade de Órgãos/genética , Homologia de Sequência , Testículo/crescimento & desenvolvimento
8.
Curr Opin Microbiol ; 20: 170-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25042205

RESUMO

The evolution of viral sensors is likely to be shaped by the constraint imposed through high conservation of viral Pathogen-Associated Molecular Patterns (PAMPs), and by the potential for 'arms race' coevolution with more rapidly evolving viral proteins. Here we review the recent progress made in understanding the evolutionary history of two types of viral sensor, RNA helicases and Toll-like receptors. We find differences both in their rates of evolution, and in the levels of positive selection they experience. We suggest that positive selection has been the primary driver of the rapid evolution of the RNA helicases, while selective constraint has been a stronger influence shaping the slow evolution of the Toll-like receptors.


Assuntos
Evolução Biológica , Imunidade Inata , Vírus/imunologia , Animais , RNA Helicases/genética , RNA Helicases/imunologia , RNA Helicases/metabolismo , Seleção Genética , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa