Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bull Entomol Res ; 114(2): 254-259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444236

RESUMO

Peach-potato aphids, Myzus persicae Sulzer (Hemiptera:Aphididae), and cabbage aphids, Brevicoryne brassicae Linnaeus (Hemiptera:Aphididae), are herbivorous insects of significant agricultural importance. Aphids can harbour a range of non-essential (facultative) endosymbiotic bacteria that confer multiple costs and benefits to the host aphid. A key endosymbiont-derived phenotype is protection against parasitoid wasps, and this protective phenotype has been associated with several defensive enodsymbionts. In recent years greater emphasis has been placed on developing alternative pest management strategies, including the increased use of natural enemies such as parasitoids wasps. For the success of aphid control strategies to be estimated the presence of defensive endosymbionts that can potentially disrupt the success of biocontrol agents needs to be determined in natural aphid populations. Here, we sampled aphids and mummies (parasitised aphids) from an important rapeseed production region in Germany and used multiplex PCR assays to characterise the endosymbiont communities. We found that aphids rarely harboured facultative endosymbionts, with 3.6% of M. persicae and 0% of B. brassicae populations forming facultative endosymbiont associations. This is comparable with endosymbiont prevalence described for M. persicae populations surveyed in Australia, Europe, Chile, and USA where endosymbiont infection frequencies range form 0-2%, but is in contrast with observations from China where M. persicae populations have more abundant and diverse endosymbiotic communities (endosymbionts present in over 50% of aphid populations).


Assuntos
Afídeos , Simbiose , Afídeos/microbiologia , Animais , Alemanha , Produtos Agrícolas/microbiologia , Brassica rapa/microbiologia
2.
Sci Rep ; 12(1): 17836, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284143

RESUMO

Despite their abundance and economic importance, the mechanism of plant resistance to sap-feeding insects remains poorly understood. Here we deploy meta-analysis and data synthesis methods to evaluate the results from electrophysiological studies describing feeding behaviour experiments where resistance mechanisms were identified, focussing on studies describing host-plant resistance and non-host resistance mechanisms. Data were extracted from 108 studies, comprising 41 insect species across eight insect taxa and 12 host-plant families representing over 30 species. Results demonstrate that mechanisms deployed by resistant plants have common consequences on the feeding behaviour of diverse insect groups. We show that insects feeding on resistant plants take longer to establish a feeding site and have their feeding duration suppressed two-fold compared with insects feeding on susceptible plants. Our results reveal that traits contributing towards resistant phenotypes are conserved across plant families, deployed against taxonomically diverse insect groups, and that the underlying resistance mechanisms are conserved. These findings provide a new insight into plant-insect interaction and highlight the need for further mechanistic studies across diverse taxa.


Assuntos
Herbivoria , Insetos , Animais , Comportamento Alimentar , Herbivoria/genética , Insetos/fisiologia , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa