Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
BMC Plant Biol ; 24(1): 97, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331770

RESUMO

BACKGROUND: Drought is thought to be a major abiotic stress that dramatically limits tomato growth and production. As signal molecule, melatonin (MT) and carbon monoxide (CO) can enhance plant stress resistance. However, the effect and underlying mechanism of CO involving MT-mediated drought resistance in seedling growth remains unknown. In this study, tomato (Solanum lycopersicum L. 'Micro-Tom') seedlings were used to investigate the interaction and mechanism of MT and CO in response to drought stress. RESULTS: The growth of tomato seedlings was inhibited significantly under drought stress. Exogenous MT or CO mitigated the drought-induced impairment in a dose-dependent manner, with the greatest efficiency provided by 100 and 500 µM, respectively. But application of hemoglobin (Hb, a CO scavenger) restrained the positive effects of MT on the growth of tomato seedlings under drought stress. MT and CO treatment promoted chlorophyll a (Chl a) and chlorophyll a (Chl b) accumulations. Under drought stress, the intermediate products of chlorophyll biosynthesis such as protoporphyrin IX (Proto IX), Mg-protoporphyrin IX (Mg-Proto IX), potochlorophyllide (Pchlide) and heme were increased by MT or CO, but uroporphyrinogen III (Uro III) content decreased in MT-treated or CO-treated tomato seedlings. Meanwhile, MT or CO up-regulated the expression of chlorophyll and heme synthetic-related genes SlUROD, SlPPOX, SlMGMT, SlFECH, SlPOR, SlChlS, and SlCAO. However, the effects of MT on chlorophyll biosynthesis were almost reversed by Hb. CONCLUSION: The results suggested that MT and CO can alleviate drought stress and facilitate the synthesis of Chl and heme in tomato seedlings. CO played an essential role in MT-enhanced drought resistance via facilitating chlorophyll biosynthesis pathway.


Assuntos
Melatonina , Solanum lycopersicum , Clorofila/metabolismo , Melatonina/metabolismo , Plântula/metabolismo , Solanum lycopersicum/genética , Clorofila A/metabolismo , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Resistência à Seca , Heme/metabolismo , Heme/farmacologia
2.
Physiol Plant ; 176(4): e14419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38973451

RESUMO

Abiotic stress impairs plant growth and development, thereby causing low yield and inferior quality of crops. Increasing studies reported that strigolactones (SL) are plant hormones that enhance plant stress resistance by regulating plant physiological processes and gene expressions. In this review, we introduce the response and regulatory role of SL in salt, drought, light, heat, cold and cadmium stresses in plants. This review also discusses how SL alleviate the damage of abiotic stress in plants, furthermore, introducing the mechanisms of SL enhancing plant stress resistance at the genetic level. Under abiotic stress, the exogenous SL analog GR24 can induce the biosynthesis of SL in plants, and endogenous SL can alleviate the damage caused by abiotic stress. SL enhanced the stress resistance of plants by protecting photosynthesis, enhancing the antioxidant capacity of plants and promoting the symbiosis between plants and arbuscular mycorrhiza (AM). SL interact with abscisic acid (ABA), salicylic acid (SA), auxin, cytokinin (CK), jasmonic acid (JA), hydrogen peroxide (H2O2) and other signal molecules to jointly regulate plant stress resistance. Lastly, both the importance of SL and their challenges for future work are outlined in order to further elucidate the specific mechanisms underlying the roles of SL in plant responses to abiotic stress.


Assuntos
Lactonas , Reguladores de Crescimento de Plantas , Estresse Fisiológico , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Plantas/efeitos dos fármacos , Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
3.
Plant Cell Rep ; 43(7): 180, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914787

RESUMO

KEY MESSAGE: Hydrogen sulfide improved cold resistance of tomato fruits by regulating energy metabolism and delaying cell wall degradation, thereby alleviating the damage of cold storage on fruits. Postharvest cold storage in tomato fruits extended shelf life but caused the appearance of chilling injury (CI), appeared by softness and spots on the surface of the fruits. These changes were linked closely with energy and cell wall metabolisms. Hydrogen sulfide (H2S), as the gaseous fresh-keeping regulator, was used in the present study to investigate the effects of H2S on energy and cell wall metabolisms in tomato fruits during cold storage. Fruits after harvest were fumigated with different concentrations (0, 0.5, 1, 1.5 mM) of sodium hydrosulfide (NaHS) solution as H2S honor for 24 h and stored at 4 °C for 25 days. The results showed that 1 and 1.5 mM NaHS solution fumigation promoted the accumulation of endogenous H2S, followed by the increase in L-cysteine desulfurase (LCD) and D-cysteine desulfurase (DCD) activities in fruits during cold storage. It was also found that 1 and 1.5 mM NaHS treatments improved H+-ATPase, Ca2+-ATPase, cytochrome C oxidase (CCO), and succinic dehydrogenase (SDH) activities. Moreover, the contents of cellulose and hemicellulose were increased by 1 and 1.5 mM NaHS, following down-regulated activities of cellulase (CL), pectin lyase (PL), α-mannosidase (α-man) and ß-Galactosidase (ß-Gal) and down-regulated expression of PL1, PL8, MAN4 and MAN7 genes. Thus, H2S alleviates CI led by cold storage in tomato fruits via regulating energy and cell wall metabolisms.


Assuntos
Parede Celular , Temperatura Baixa , Metabolismo Energético , Frutas , Sulfeto de Hidrogênio , Solanum lycopersicum , Parede Celular/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Frutas/metabolismo , Frutas/genética , Frutas/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Armazenamento de Alimentos/métodos , Sulfetos/farmacologia , Sulfetos/metabolismo
4.
Cell Mol Biol Lett ; 29(1): 57, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649857

RESUMO

In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Solanum lycopersicum , Fatores de Transcrição , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Giberelinas/metabolismo , Regiões Promotoras Genéticas/genética , Etilenos/metabolismo
5.
BMC Plant Biol ; 23(1): 2, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36588160

RESUMO

BACKGROUND: Methane (CH4) and brassinosteroids (BRs) are important signaling molecules involved in a variety of biological processes in plants. RESULTS: Here, marigold (Tagetes erecta L. 'Marvel') was used to investigate the role and relationship between CH4 and BRs during adventitious root (AR) formation. The results showed a dose-dependent effect of CH4 and BRs on rooting, with the greatest biological effects of methane-rich water (MRW, CH4 donor) and 2,4-epibrassinolide (EBL) at 20% and 1 µmol L- 1, respectively. The positive effect of MRW on AR formation was blocked by brassinoazole (Brz, a synthetic inhibitor of EBL), indicating that BRs might be involved in MRW-regulated AR formation. MRW promoted EBL accumulation during rooting by up-regulating the content of campestanol (CN), cathasterone (CT), and castasterone (CS) and the activity of Steroid 5α-reductase (DET2), 22α-hydroxylase (DWF4), and BR-6-oxidase (BR6ox), indicating that CH4 could induce endogenous brassinolide (BR) production during rooting. Further results showed that MRW and EBL significantly down-regulated the content of cellulose, hemicellulose and lignin during rooting and significantly up-regulated the hydrolase activity, i.e. cmcase, xylanase and laccase. In addition, MRW and EBL also significantly promoted the activity of two major cell wall relaxing factors, xyloglucan endotransglucosylase/hydrolase (XTH) and peroxidase, which in turn promoted AR formation. While, Brz inhibited the role of MRW on these substances. CONCLUSIONS: BR might be involved in CH4-promoted AR formation by increasing cell wall relaxation.


Assuntos
Brassinosteroides , Celulose , Brassinosteroides/farmacologia , Metano/farmacologia , Hidrolases , Raízes de Plantas/fisiologia
6.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298477

RESUMO

Melatonin (MT) and nitric oxide (NO) act as signaling molecules that can enhance cadmium (Cd) stress resistance in plants. However, little information is available about the relationship between MT and NO during seedling growth under Cd stress. We hypothesize that NO may be involved in how MT responds to Cd stress during seedling growth. The aim of this study is to evaluate the relationship and mechanism of response. The results indicate that different concentrations of Cd inhibit the growth of tomato seedlings. Exogenous MT or NO promotes seedling growth under Cd stress, with a maximal biological response at 100 µM MT or NO. The promotive effects of MT-induced seedling growth under Cd stress are suppressed by NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO), suggesting that NO may be involved in MT-induced seedling growth under Cd stress. MT or NO decreases the content of hydrogen peroxide (H2O2), malonaldehyde (MDA), dehydroascorbic acid (DHA), and oxidized glutathione (GSSG); improves the content of ascorbic acid (AsA) and glutathione (GSH) and the ratios of AsA/DHA and GSH/GSSG; and enhances the activities of glutathione reductase (GR), monodehydroascorbic acid reductase (MDHAR), dehydroascorbic acid reductase (DHAR), ascorbic acid oxidase (AAO), and ascorbate peroxidase (APX) to alleviate oxidative damage. Moreover, the expression of genes associated with the ascorbate-glutathione (AsA-GSH) cycle and reactive oxygen species (ROS) are up-regulated by MT or NO under Cd conditions, including AAO, AAOH, APX1, APX6, DHAR1, DHAR2, MDHAR, and GR. However, NO scavenger cPTIO reverses the positive effects regulated by MT. The results indicate that MT-mediated NO enhances Cd tolerance by regulating AsA-GSH cycle and ROS metabolism.


Assuntos
Melatonina , Solanum lycopersicum , Antioxidantes/farmacologia , Melatonina/farmacologia , Melatonina/metabolismo , Plântula/metabolismo , Cádmio/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dissulfeto de Glutationa/metabolismo , Ácido Desidroascórbico/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Oxirredutases/metabolismo
7.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003253

RESUMO

Fasciclin-like arabinogalactan proteins (FLAs), a subclass of arabinogalactan proteins (AGPs), participate in mediating plant growth, development, and response to abiotic stress. However, the characterization and function of FLAs in tomato are currently unknown. In this study, members of the tomato FLA family are characterized and analyzed in relation to their response to phytohormonal and abiotic stresses. The results show that a total of 24 FLA members were characterized in tomato. The structural domain analysis showed that these members have a high protein similarity. The expression profiles of different tissues indicated that the genes of most members of the tomato FLA gene family are highly expressed in roots, but to a lower extent in fruits. qRT-PCR analysis revealed that all 24 tomato FLA genes are responsive to ABA and MeJA. SlFLAs showed a positive response to salt and cold stress. SlFLA1, SlFLA12, and SlFLA14 are significantly induced under darkness. SlFLA1 and SlFLA3 are significantly induced under drought stress. This study provides a basis for a further understanding of the role of tomato FLA homologous genes in plant response to abiotic stress and lays the foundation for further research on the function of FLAs in tomato.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Plantas/metabolismo , Hormônios , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Filogenia
8.
Angew Chem Int Ed Engl ; 62(8): e202214391, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36420911

RESUMO

Solar-driven water purification is considered as an effective and sustainable technology for water treatment using green solar energy. One major goal for practical applications is to improve the solar evaporation performance by the design of novel photothermal materials, with optimized heat localization and water transport pathways to achieve reduced energy consumption for water vaporization. Recently, some emerging materials like polymers, metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and also single molecules were employed to construct novel solar evaporation systems. In this minireview, we present an overview of the recent efforts on materials development for water purification systems. The state-of-the-art applications of these emerging materials for solar-driven water treatment, including desalination, wastewater purification, sterilization and energy production, are also summarized.

9.
J Am Chem Soc ; 144(7): 3083-3090, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138088

RESUMO

Solar-driven water generation is a sustainable water treatment technology, helping to relieve global water scarcity issues. However, this technology faces great challenges due to the high energy consumption of water evaporation yielding low evaporation rates. Here, a covalent organic framework (COF)/graphene dual-region hydrogel, containing hydrophilic and hydrophobic regions in one material, is developed through a facile in situ growth strategy. The hydrophilic COF is covering parts of the hydrophobic graphene regions. Through accurate control of both wetting regions, the hybrid hydrogel shows effective light-harvesting, tunable wettability, optimized water content, and lowered energy demand for water vaporization. Acting as solar absorber, the dual-region hydrogel exhibits a steam generation rate as high as 3.69 kg m-2 h-1 under 1 sun irradiation (1 kW m-2), which competes well with other state-of-the-art materials. Furthermore, this hydrogel evaporator can be used to produce drinkable water from seawater and sewage, demonstrating the potential for water treatment.

10.
J Plant Res ; 135(2): 337-350, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35106650

RESUMO

Both strigolactones (SLs) and nitric oxide (NO) are regulatory signals with diverse roles during stress responses. At present, the interaction and mechanism of SLs and NO in tomato salt tolerance remain unclear. In the current study, tomato 'Micro-Tom' was used to study the roles and interactions of SLs and NO in salinity stress tolerance. The results show that 15 µM SLs synthetic analogs GR24 and 10 µM NO donor S-nitrosoglutathione (GSNO) promoted seedling growth under salt stress. TIS108 (an inhibitor of strigolactone synthesis) suppressed the positive roles of NO in tomato growth under salt stress, indicating that endogenous SLs might be involved in NO-induced salt response in tomato seedlings. Meanwhile, under salt stress, GSNO or GR24 treatment induced the increase of endogenous SLs content in tomato seedlings. Moreover, GR24 or GSNO treatment effectively increased the content of chlorophyll, carotenoids and ascorbic acid (ASA), and enhanced the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase), glutathione reductase (GR) and cleavage dioxygenase (CCD) enzyme. Additionally, GSNO or GR24 treatment also up-regulated the expression of SLs synthesis genes (SlCCD7, SlCCD8, SlD27 and SlMAX1) and its signal transduction genes (SlD14 and SlMAX2) in tomato seedlings under salt stress. While, a strigolactone synthesis inhibitor TIS108 blocked the increase of endogenous SLs, chlorophyll, carotenoids and ASA content, and antioxidant enzyme, GR, CCD enzyme activity and SLs-related gene expression levels induced by GSNO. Thus, SLs may play an important role in NO-enhanced salinity tolerance in tomato seedlings by increasing photosynthetic pigment content, enhancing antioxidant capacity and improving endogenous SLs synthesis.


Assuntos
Plântula , Solanum lycopersicum , Antioxidantes/metabolismo , Compostos Heterocíclicos com 3 Anéis , Lactonas/metabolismo , Lactonas/farmacologia , Óxido Nítrico/metabolismo , Plântula/fisiologia
11.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077446

RESUMO

Nitric oxide (NO) acts as a gaseous signalling molecule and is considered to be a key regulator in the postharvest storage of fruits. Postharvest senescence is one of the most serious threats affecting the usage and economic value of fruits. Most recent studies have found that exogenous NO application can effectively improve the quality and prolong the shelf life of fruit postharvest by inhibiting postharvest diseases and alleviating chilling injury. Understanding the roles of NO is essential to elucidating how NO activates the appropriate set of responses to postharvest senescence. Here, we concluded that exogenous NO treatment alleviated senescence in postharvest fruit and attributed this to the following factors: (1) ethylene biosynthesis, (2) the antioxidant system, (3) polyamine metabolism and γ-aminobutyric acid (GABA) shunting, (4) cell wall metabolism, (5) sugar metabolism, (6) energy metabolism, (7) the CRT/DRE-binding factor (CBF) pathway and (8) S-nitrosylation. Moreover, crosstalk between NO and hydrogen sulfide (H2S), hydrogen peroxide (H2O2), oxalic acid (OA), arginine (Arg), GATA or plant hormone abscisic acid (ABA), melatonin (MT), and methyl jasmonate (MeJA), along with the regulation of key genes, were found to be very important in responses to postharvest senescence. In this study, we focus on the recent knowledge concerning the alleviative effect of NO on postharvest senescence, covering ethylene biosynthesis, the antioxidant system and related gene and protein expression.


Assuntos
Frutas , Óxido Nítrico , Antioxidantes/farmacologia , Etilenos/metabolismo , Frutas/metabolismo , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo
12.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36233003

RESUMO

Anthocyanins act as polyphenolic pigment that is ubiquitously found in plants. Anthocyanins play a role not only in health-promoting as an antioxidant, but also in protection against all kinds of abiotic and biotic stresses. Most recent studies have found that MYB transcription factors (MYB TFs) could positively or negatively regulate anthocyanin biosynthesis. Understanding the roles of MYB TFs is essential in elucidating how MYB TFs regulate the accumulation of anthocyanin. In the review, we summarized the signaling pathways medicated by MYB TFs during anthocyanin biosynthesis including jasmonic acid (JA) signaling pathway, cytokinins (CKs) signaling pathway, temperature-induced, light signal, 26S proteasome pathway, NAC TFs, and bHLH TFs. Moreover, structural and regulator genes induced by MYB TFs, target genes bound and activated or suppressed by MYB TFs, and crosstalk between MYB TFs and other proteins, were found to be vitally important in the regulation of anthocyanin biosynthesis. In this study, we focus on the recent knowledge concerning the regulator signaling and mechanism of MYB TFs on anthocyanin biosynthesis, covering the signaling pathway, genes expression, and target genes and protein expression.


Assuntos
Antocianinas , Fatores de Transcrição , Antioxidantes , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Citocininas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo
13.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562930

RESUMO

Nitric oxide (NO), as a ubiquitous gas signaling molecule, modulates various physiological and biochemical processes and stress responses in plants. In our study, the NO donor nitrosoglutathione (GSNO) significantly promoted tomato seedling growth under NaCl stress, whereas NO scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide potassium (cPTIO) treatment reversed the positive effect of NO, indicating that NO plays an essential role in enhancing salt stress resistance. To explore the mechanism of NO-alleviated salt stress, the transcriptome of tomato leaves was analyzed. A total of 739 differentially expressed genes (DEGs) were identified and classified into different metabolic pathways, especially photosynthesis, plant hormone signal transduction, and carbon metabolism. Of these, approximately 16 and 9 DEGs involved in plant signal transduction and photosynthesis, respectively, were further studied. We found that GSNO increased the endogenous indoleacetic acid (IAA) and salicylic acid (SA) levels but decreased abscisic acid (ABA) and ethylene (ETH) levels under salt stress conditions. Additionally, GSNO induced increases in photosynthesis pigment content and chlorophyll fluorescence parameters under NaCl stress, thereby enhancing the photosynthetic capacity of tomato seedlings. Moreover, the effects of NO mentioned above were reversed by cPTIO. Together, the results of this study revealed that NO regulates the expression of genes related to phytohormone signal transduction and photosynthesis antenna proteins and, therefore, regulates endogenous hormonal equilibrium and enhances photosynthetic capacity, alleviating salt toxicity in tomato seedlings.


Assuntos
Plântula , Solanum lycopersicum , Solanum lycopersicum/genética , Óxido Nítrico/metabolismo , Fotossíntese , Reguladores de Crescimento de Plantas/metabolismo , Estresse Salino , Plântula/genética , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico
14.
Angew Chem Int Ed Engl ; 61(35): e202206564, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35639272

RESUMO

Covalent organic frameworks (COFs) are of great potential as adsorbents owing to their tailorable functionalities, low density and high porosity. However, their intrinsically stacked two-dimensional (2D) structure limits the full use of their complete surface for sorption, especially the internal pores. The construction of ultrathin COFs could increase the exposure of active sites to the targeted molecules in a pollutant environment. Herein, an ultrathin COF with a uniform thickness of ca. 2 nm is prepared employing graphene as the surface template. The resulting hybrid aerogel with an ultralow density (7.1 mg cm-3 ) exhibits the ability to remove organic dye molecules of different sizes with high efficiency. The three-dimensional (3D) macroporous structure and well-exposed adsorption sites permit rapid diffusion of solution and efficient adsorption of organic pollutants, thereby, greatly contributing to its enhanced uptake capacity. This work highlights the effect of COF layer thickness on adsorption performance.

15.
Angew Chem Int Ed Engl ; 61(15): e202114707, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35102658

RESUMO

Electrochemical CO2 reduction is a potential approach to convert CO2 into valuable chemicals using electricity as feedstock. Abundant and affordable catalyst materials are needed to upscale this process in a sustainable manner. Nickel-nitrogen-doped carbon (Ni-N-C) is an efficient catalyst for CO2 reduction to CO, and the single-site Ni-Nx motif is believed to be the active site. However, critical metrics for its catalytic activity, such as active site density and intrinsic turnover frequency, so far lack systematic discussion. In this work, we prepared a set of covalent organic framework (COF)-derived Ni-N-C catalysts, for which the Ni-Nx content could be adjusted by the pyrolysis temperature. The combination of high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure evidenced the presence of Ni single-sites, and quantitative X-ray photoemission addressed the relation between active site density and turnover frequency.

16.
Planta ; 254(5): 106, 2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34689230

RESUMO

MAIN CONCLUSION: HRW increased the content of starch and sucrose via regulating a series of sucrose and starch synthesis genes, which induced the formation of bulblets and adventitious roots of Lilium davidii var. unicolor. Hydrogen gas (H2), as a signaling molecule, has been reported to be involved in plant growth and development. Here, the effect of hydrogen-rich water (HRW) on the formation of bulblets and adventitious roots in the scale cuttings of Lilium davidii var. unicolor and its mechanisms at the molecular levels were investigated. The results revealed that compared with distilled water treatment (Con), the number of bulblets and adventitious roots were significantly promoted by different concentrations of HRW treatment. Treatment with 100% HRW obtained the most positive effects. RNA sequencing (RNA-seq) analysis found that compared with Con, a total of 1702 differentially expressed genes (DEGs, upregulated 552 DEGs, downregulated 1150 DEGs) were obtained under HRW treatment. The sucrose and starch metabolism, cysteine and methionine metabolism and phenylalanine metabolism were significantly enriched in the analysis of the Kyoto encyclopedia of genes and genomes (KEGG). In addition, the genes involved in carbohydrate metabolism were significantly upregulated or downregulated (upregulated 22 DEGs, downregulated 15 DEGs), indicating that starch and sucrose metabolism held a central position. The expressions of 12 DEGs were identified as coding for key enzymes in metabolism of carbohydrates was validated by qPCR during bulblet formation progress. RNA-seq analysis and expression profiles indicated that the unigene levels such as glgc, Susy, otsA and glgP, BMY and TPS were well correlated with sucrose and starch metabolism during HRW-induced bulblet formation. The change of key enzyme content in starch and sucrose metabolism pathway was explored during bulblet formation in Lilium under HRW treatment. Meanwhile, compared with Con, 100% HRW treatment increased the levels of sucrose and starch, and decreased the trehalose content, which were agreed with the expression pattern of DEGs related to the biosynthesis pathway of sucrose, starch and trehalose. Therefore, this study suggested that HRW could promote the accumulation of sucrose and starch contents in mother scales, and decreased the trehalose content, this might provide more energy for bulblet formation.


Assuntos
Lilium , Metabolismo dos Carboidratos , Hidrogênio , Lilium/genética , Amido , Sacarose , Água
17.
Physiol Plant ; 172(4): 1919-1930, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33748992

RESUMO

Previous studies have shown that methane (CH4 ) has promoting roles in the adventitious root (AR) and lateral root (LR) formation in plants. However, whether CH4 could trigger the bulblet formation in scale cutting of Lilium davidii var. unicolor has not been elucidated. To gain insight into the effect of CH4 on the bulblet formation, different concentrations (1, 10, 50, and 100%) of methane-rich water (MRW) and distilled water were applied to treat the scale cuttings of Lilium. We observed that treatment with 100% MRW obviously induced the bulblet formation in scale cuttings. To explore the mechanism of CH4 -induced bulblet formation, the transcriptome of scales was analyzed. A total of 2078 differentially expressed genes (DEGs) were identified. The DEGs were classified into different metabolic pathways, especially phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant signal transduction. Of these, approximately 38 candidate DEGs involved in the plant signal transduction were further studied. In addition, the expression of AP2-ERF/ERF, WRKY, GRAS, ARF, and NAC transcription factors (TFs) was changed by MRW treatment, suggesting their potential involvement in bulblet formation. As for hormones, exogenous IAA, GA, and ABA could induce the bulblet formation. Additional experiments suggested that MRW could increase the endogenous IAA, GA, and JA levels, but decrease the levels of ABA during bulblet formation, which showed that higher IAA, GA, JA levels and lower ABA content might facilitate bulblet formation. In addition, the levels of endogenous hormones were consistent with the expression level of genes involved in phytohormone signal transduction. Overall, this study has revealed that CH4 might improve the bulblet formation of cutting scales in Lilium by regulating the expression of genes related to phytohormone signal transduction and TFs, as well as by changing the endogenous hormone levels.


Assuntos
Lilium , Reguladores de Crescimento de Plantas , Regulação da Expressão Gênica de Plantas , Lilium/genética , Metano , Raízes de Plantas , Transdução de Sinais , Água
18.
Planta ; 252(1): 9, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32602044

RESUMO

MAIN CONCLUSION: NO was involved in H2-induced adventitious rooting by regulating the protein and gene expressions of PM H+-ATPase and 14-3-3. Simultaneously, the interaction of PM H+-ATPase and 14-3-3 protein was also involved in this process. Hydrogen gas (H2) and nitric oxide (NO) have been shown to be involved in plant growth and development. The results in this study revealed that NO was involved in H2-induced adventitious root formation. Western blot (WB) analysis showed that the protein abundances of plasma membrane H+-ATPase (PM H+-ATPase) and 14-3-3 protein were increased after H2, NO, H2 plus NO treatments, whereas their protein abundances were down regulated when NO scavenger carboxy-2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTI O) was added. Moreover, the mRNA abundances of the HA3 and 14-3-3(7) gene as well as the activities of PM H+-ATPase (EC 3.6.1.35) and H+ pump were in full agreement with the changes of protein abundance. Phosphorylation of PM H+-ATPase and the interaction of PM H+-ATPase and 14-3-3 protein were detected by co-immunoprecipitation analysis. H2 and NO significantly up regulated the phosphorylation of PM H+-ATPase and the interaction of PM H+-ATPase and 14-3-3 protein. Conversely, the stimulation of PM H+-ATPase phosphorylation and protein interaction were significantly diminished by cPTIO. Protein interaction activator fusicoccin (FC) and inhibitor adenosine monophosphate (AMP) of PM H+-ATPase and 14-3-3 were used in this study, and the results showed that FC significantly increased the abundances of PM H+-ATPase and 14-3-3, while AMP showed opposite trends. We further proved the critical roles of PM H+-ATPase and 14-3-3 protein interaction in NO-H2-induced adventitious root formation. Taken together, our results suggested that NO might be involved in H2-induced adventitious rooting by regulating the expression and the interaction of PM H+-ATPase and 14-3-3 protein.


Assuntos
Cucumis sativus/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Óxido Nítrico/farmacologia , ATPases Translocadoras de Prótons/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membrana Celular/enzimologia , Cucumis sativus/enzimologia , Cucumis sativus/crescimento & desenvolvimento , Glicosídeos/metabolismo , Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , ATPases Translocadoras de Prótons/genética
19.
ChemSusChem ; 17(20): e202301906, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-38757750

RESUMO

We report a sulfonated covalent organic framework (COF) capable of atmospheric water harvesting in arid conditions. The isothermal water uptake profile of the framework was studied, and the network displayed steep water sorption at low relative humidity (RH) in temperatures of up to 45 °C, reaching a water uptake of 0.12 g g-1 at 10 % RH and even 0.08 g g-1 at just 5 % RH, representing some of the most extreme conditions on the planet. We found that the inclusion of sulfonate moieties shifted uptake in the water isotherm profiles to lower RH compared to non-sulfonated equivalents, demonstrating well the benefits of including these hydrophilic sites for water uptake in hot, arid locations. Repeated uptake and desorption cycles were performed on the material without significant detriment to its adsorption performance, demonstrating the potential of the sulfonated COF for real-world implementation.

20.
Adv Sci (Weinh) ; : e2409290, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39467257

RESUMO

Metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs)-based aerogels are garnering significant attention owing to their unique chemical and structural properties. These materials harmoniously combine the advantages of MOFs and COFs-such as high surface area, customizable porosity, and varied chemical functionality-with the lightweight and structured porosity characteristic of aerogels. This combination opens up new avenues for advanced applications in fields where material efficiency and enhanced functionality are critical. This review provides a comparative overview of the synthetic strategies utilized to produce pristine MOF/COF aerogels as well as MOF/COF-based hybrid aerogels, which are functionalized with molecular precursors and nanoscale materials. The versatility of these aerogels positions them as promising candidates for addressing complex challenges in environmental remediation, energy storage and conversion, sustainable water-energy technologies, and chemical separations. Furthermore, this study discusses the current challenges and future prospects related to the synthesis techniques and applications of MOF/COF aerogels.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa