Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2317282121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416683

RESUMO

Micro-sized single-crystalline Ni-rich cathodes are emerging as prominent candidates owing to their larger compact density and higher safety compared with poly-crystalline counterparts, yet the uneven stress distribution and lattice oxygen loss result in the intragranular crack generation and planar gliding. Herein, taking LiNi0.83Co0.12Mn0.05O2 as an example, an optimal particle size of 3.7 µm is predicted by simulating the stress distributions at various states of charge and their relationship with fracture free-energy, and then, the fitted curves of particle size with calcination temperature and time are further built, which guides the successful synthesis of target-sized particles (m-NCM83) with highly ordered layered structure by a unique high-temperature short-duration pulse lithiation strategy. The m-NCM83 significantly reduces strain energy, Li/O loss, and cationic mixing, thereby inhibiting crack formation, planar gliding, and surface degradation. Accordingly, the m-NCM83 exhibits superior cycling stability with highly structural integrity and dual-doped m-NCM83 further shows excellent 88.1% capacity retention.

2.
J Am Chem Soc ; 146(11): 7575-7583, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466222

RESUMO

Electrocatalytic reactions taking place at the electrified electrode-electrolyte interface involve processes of proton-coupled electron transfer. Interfacial protons are delivered to the electrode surface via a H2O-dominated hydrogen-bond network. Less efforts are made to regulate the interfacial proton transfer from the perspective of interfacial hydrogen-bond network. Here, we present quaternary ammonium salt cationic surfactants as electrolyte additives for enhancing the H2O2 selectivity of the oxygen reduction reaction (ORR). Through in situ vibrational spectroscopy and molecular dynamics calculation, it is revealed that the surfactants are irreversibly adsorbed on the electrode surface in response to a given bias potential range, leading to the weakening of the interfacial hydrogen-bond network. This decreases interfacial proton transfer kinetics, particularly at high bias potentials, thus suppressing the 4-electron ORR pathway and achieving a highly selective 2-electron pathway toward H2O2. These results highlight the opportunity for steering H2O-involved electrochemical reactions via modulating the interfacial hydrogen-bond network.

3.
Small ; 20(4): e2306160, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715337

RESUMO

The energy density of Ni-rich cathodes is expected to be further unlocked by increasing the cut-off voltage to above 4.3 V, which nevertheless come with significantly increased irreversible phase transition and abundant side reactions. In this study, the perovskite oxides enhanced radial-aligned LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) cathodes are reported, in which the coherent-growth La2 [LiTM]O4 clusters are evenly riveted into the crystals and the stable Lax Ca1- x [TM]O3- x protective layer is concurrently formed on the surface. The reciprocal interactions greatly reduce the lattice strain during de-/lithiation. Meantime, the abundant oxygen vacancies of the coating layer are proved to reversibly capture (state of charge) and re-release (state of discharge) the oxygen radicals, fully avoiding their correlative side reactions. The resultant NCM811 displays negligible O2 and CO2 emissions when charging to 4.5 V as well as a thinner CEI film, therefore delivering a large capacity of 225 mAh g-1 at 0.1C in coin-type half-cells and a high retention of 88.3% after 1000 cycles at 1C in pouch-type full-cells within 2.7-4.5 V. The development of high-voltage Ni-rich cathodes exhibits a highly effective pathway to further increase their energy density.

4.
Small ; 20(11): e2306795, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38095535

RESUMO

The formation of carbonate in neutral/alkaline solutions leads to carbonate crossover, severely reducing carbon dioxide (CO2 ) single pass conversion efficiency (SPCE). Thus, CO2 electrolysis is a prospective route to achieve high CO2 utilization under acidic environment. Bimetallic Bi-based catalysts obtained utilizing metal doping strategies exhibit enhanced CO2 -to-formic acid (HCOOH) selectivity in alkaline/neutral media. However, achieving high HCOOH selectivity remains challenging in acidic media. To this end, Indium (In) doped Bi2O2CO3 via hydrothermal method is prepared for in-situ electroreduction to In-Bi/BiOx nanosheets for acidic CO2 reduction reaction (CO2RR). In doping strategy regulates the electronic structure of Bi, promoting the fast derivatization of Bi2O2CO3 into Bi-O active sites to enhance CO2RR catalytic activity. The optimized Bi2 O2 CO3 -derived catalyst achieves the maximum HCOOH faradaic efficiency (FE) of 96% at 200 mA cm-2 . The SPCE for HCOOH production in acid is up to 36.6%, 2.2-fold higher than the best reported catalysts in alkaline environment. Furthermore, in situ Raman and X-ray photoelectron spectroscopy demonstrate that In-induced electronic structure modulation promotes a rapid structural evolution from nanobulks to Bi/BiOx nanosheets with more active species under acidic CO2 RR, which is a major factor in performance improvement.

5.
Small ; 20(24): e2311891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38178190

RESUMO

The active lithium loss of lithium-ion batteries can be well addressed by adding a cathode lithium compensation agent. Due to the poor conductivity and electrochemical activity, lithium carbonate (Li2CO3) is not considered as a candidate. Herein, an effective cathode lithium compensation agent, the recrystallized Li2CO3 combined with large specific surface area disordered porous carbon (R-LCO@SPC) is prepared. The screened SPC makes it easier for nano-sized Li2CO3 to adsorb and decompose on carbon substrate, meantime, exposing plenty of catalytic active sites of C═O, which can significantly improve the electrochemical activity and conductivity of Li2CO3, thus greatly reducing the decomposition potential of Li2CO3 (4.0 V) and releasing high irreversible capacity (580 mAh g-1) compared to the unmodified Li2CO3 (nearly no capacity above 4.6 V). Meantime, the Li2CO3 can disappear completely without any by-product after the initial cycle accompanied by partially dissolved in electrolyte, optimizing the composition of SEI. The resultant lithium compensation agent applied to LMFP//graphite full cell exhibits a 19.1% increase in energy density, enhancing the rate and cycling performance, demonstrating great practical applications potential in high energy density lithium-ion batteries.

6.
Small ; : e2311346, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308159

RESUMO

Single-atom catalysts (SACs) exhibit remarkable catalytic activity at each metal site. However, conventionally synthesized single-atom catalysts often possess low metal loading, thereby constraining their overall catalytic performance. Here, a flame spray pyrolysis (FSP) method for the synthesis of a single-atom catalyst with a high loading capacity of up to 1.4 wt.% in practice is reported. CeZrO2 acts as a carrier and provides a large number of anchoring sites, which promotes the high-density generation of Pd, and the strong interaction between the metal and the support avoids atom aggregation. Pd-CeZrO2 series catalysts have excellent CO oxidation performance. When 0.97 wt.% Pd is added, the catalytic activity is the highest, and the temperature can be reduced to 120 °C. This work presented here demonstrates that FSP, as an inherently scalable technique, allows for elevating the single-atom loading to achieve an increase in its catalytic performance. The method presented here more options for the preparation of SACs.

7.
Small ; : e2401360, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708800

RESUMO

Alloying multiple immiscible elements into a nanoparticle with single-phase solid solution structure (high-entropy-alloy nanoparticles, HEA-NPs) merits great potential. To date, various kinds of synthesis techniques of HEA-NPs are developed; however, a continuous-flow synthesis of freestanding HEA-NPs remains a challenge. Here a micron-droplet-confined strategy by flame spray pyrolysis (FSP) to achieve the continuous-flow synthesis of freestanding HEA-NPs, is proposed. The continuous precursor solution undergoes gas shearing and micro-explosion to form nano droplets which act as the micron-droplet-confined reactors. The ultrafast evolution (<5 ms) from droplets to <10 nm nanoparticles of binary to septenary alloys is achieved through thermodynamic and kinetic control (high temperature and ultrafast colling). Among them, the AuPtPdRuIr HEA-NPs exhibit excellent electrocatalytic performance for alkaline hydrogen evolution reaction with 23 mV overpotential to achieve 10 mA cm-2, which is twofold better than that of the commercial Pt/C. It is anticipated that the continuous-flow synthesis by FSP can introduce a new way for the continuous synthesis of freestanding HEA-NP with a high productivity rate.

8.
Langmuir ; 40(14): 7492-7501, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38530941

RESUMO

The important concept of confined synthesis is considered a promising strategy for the design and synthesis of definable nanostructured materials with controllable compositions and specific morphology, such as highly loaded single-atom catalysts capable of providing abundant active sites for photocatalytic reactions. In recent years, researchers have been working on developing new confined reaction systems and searching for new confined spaces. Here, we present for the first time the concept of a bubble liquid film as a novel confined space. The liquid film has a typical sandwich structure consisting of a water layer, sandwiched between the upper and lower surfactant layers, with the thickness of the intermediate water layer at the micro- and nanometer scales, which can serve as a good confinement. Based on the above understanding and combined with the photodeposition method, we successfully confined synthesized Ag/TiO2, Au/TiO2, and Pd/TiO2 photocatalysts in liquid film. By HAADF-STEM, it can be seen that the noble metal morphologies are all nanoclusters of about 1 nm and are highly uniformly dispersed on the TiO2 surface. Compared with photodeposition in solution, we believe that the surfactant molecular layer restricts a limited amount of precursor to the liquid film, avoiding the accumulation of noble metals and the formation of large particle size nanoparticles. The liquid film, meanwhile, restricts the migration path of noble metal precursors, allowing for thorough in situ photodeposition and enables the complete and uniform dispersion of noble metal precursors, greatly reducing the photodeposition time. The uniform loading of the three noble metals proved the universality of the method, and the catalysts showed high activity for photocatalytic CO2 reduction. The rates of reduction of CO2 to CO over the Ag/TiO2 photocatalytic reached 230 µmol g-1 h-1.This study provides a new idea for the expansion of the confined reaction system and a reference for the study of liquid film as the confined space.

9.
Angew Chem Int Ed Engl ; : e202407121, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775229

RESUMO

Electrocatalytic hydrogenation of unsaturated aldehydes to unsaturated alcohols is a promising alternative to conventional thermal processes. Both the catalyst and electrolyte deeply impact the performance. Designing the electrode-electrolyte interface remains challenging due to its compositional and structural complexity. Here, we employ the electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) as a reaction model. The typical cationic surfactant, cetyltrimethylammonium bromide (CTAB), and its analogs are employed as electrolyte additives to tune the interfacial microenvironment, delivering high-efficiency hydrogenation of HMF and inhibition of the hydrogen evolution reaction (HER). The surfactants experience a conformational transformation from stochastic distribution to directional assembly under applied potential. This oriented arrangement hampers the transfer of water molecules to the interface and promotes the enrichment of reactants. In addition, near 100% 2,5-bis(hydroxymethyl)furan (BHMF) selectivity is achieved, and the faradaic efficiency (FE) of the BHMF is improved from 61% to 74% at -100 mA cm-2. Notably, the microenvironmental modulation strategy applies to a range of electrocatalytic hydrogenation reactions involving aldehyde substrates. This work paves the way for engineering advanced electrode-electrolyte interfaces and boosting unsaturated alcohol electrosynthesis efficiency.

10.
J Am Chem Soc ; 145(11): 6516-6525, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36913524

RESUMO

Electrochemical alkynol semi-hydrogenation has emerged as a sustainable and environmentally benign route for the production of high-value alkenols, featuring water as the hydrogen source instead of H2. It is highly challenging to design the electrode-electrolyte interface with efficient electrocatalysts and their matched electrolytes to break the selectivity-activity stereotype. Here, boron-doped Pd catalysts (PdB) and surfactant-modified interface are proposed to enable the simultaneous increase in alkenol selectivity and alkynol conversion. Typically, compared to pure Pd and commercial Pd/C catalysts, the PdB catalyst achieves both higher turnover frequency (139.8 h-1) and specific selectivity (above 90%) for the semi-hydrogenation of 2-methyl-3-butyn-2-ol (MBY). Quaternary ammonium cationic surfactants that are employed as electrolyte additives are assembled at the electrified interface in response to applied bias potential, establishing an interfacial microenvironment that can facilitate alkynol transfer and hinder water transfer suitably. Eventually the hydrogen evolution reaction is inhibited and alkynol semi-hydrogenation is promoted, without inducing the decrease of alkenol selectivity. This work offers a distinct perspective on creating a suitable electrode-electrolyte interface for electrosynthesis.

11.
Langmuir ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36630661

RESUMO

Catalytic combustion is an important means to reduce toluene pollution, and improving the performance of catalytic combustion catalysts is of great significance for practical applications. The study of oxygen vacancies is one of the key steps to improve catalyst performance. Here, two different oxygen vacancy structures were well-defined and controllably synthesized by flame spray pyrolysis (FSP) to evaluate their effect on the catalytic combustion performance of toluene. The closely contacted oxygen vacancies (c-Vo) enhance the oxygen activation capacity of the catalyst, and the temperature of the first oxygen desorption peak and hydrogen reduction peak is 56 and 37 °C lower than the separated oxygen vacancy (s-Vo) sample, respectively. The oxygen activation energy barrier on the c-Vo is calculated to be negligible of only 0.04 eV. Both in situ DRIFT and DFT calculations indicate that the c-Vo structure accelerates the catalytic oxidation of p-toluene molecules. Moreover, due to the unique characteristics of high-temperature synthesis and rapid quenching, FSP brings excellent water resistance and high-temperature stability to the catalyst. In conclusion, utilizing the FSP in situ reduction strategy can create more c-Vo to improve the catalytic combustion performance of toluene.

12.
Angew Chem Int Ed Engl ; 62(33): e202307848, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37378584

RESUMO

The site isolation strategy has been employed in thermal catalytic acetylene semihydrogenation to inhibit overhydrogenation and C-C coupling. However, there is a dearth of analogous investigations in electrocatalytic systems. In this work, density functional theory (DFT) simulations demonstrate that isolated Cu metal sites have higher energy barriers on overhydrogenation and C-C coupling. Following this result, we develop Cu single-atom catalysts highly dispersed on nitrogen-doped carbon matrix, which exhibit high ethylene selectivity (>80 % Faradaic efficiency for ethylene, <1 % Faradaic efficiency for C4 , and no ethane) at high concentrations of acetylene. The superior performance observed in the electrocatalytic selective hydrogenation of acetylene can be attributed to the weak adsorption of ethylene intermediates and highly energy barriers on C-C coupling at isolated sites, as confirmed by both DFT calculations and experimental results. This study provides a comprehensive understanding of the isolated sites inhibiting the side reactions of electrocatalytic acetylene semihydrogenation.

13.
Angew Chem Int Ed Engl ; 62(2): e202215342, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36404275

RESUMO

Supercapacitor represents an important electrical energy storage technology with high-power performance and superior cyclability. However, currently commercialized supercapacitors still suffer limited energy densities. Here we report an unprecedentedly respiring supercapacitor with chlorine gas iteratively re-inspires in porous carbon materials, that improves the energy density by orders of magnitude. Both electrochemical results and theoretical calculations show that porous carbon with pore size around 3 nm delivers the best chlorine evolution and adsorption performance. The respiring supercapacitor with multi-wall carbon nanotube as the cathode and NaTi2 (PO4 )3 as the anode can store specific energy of 33 Wh kg-1 with negligible capacity loss over 30 000 cycles. The energy density can be further improved to 53 Wh kg-1 by replacing NaTi2 (PO4 )3 with zinc anode. Furthermore, thanks to the extraordinary reaction kinetics of chlorine gas, this respiring supercapacitor performs an extremely high-power density of 50 000 W kg-1 .

14.
Angew Chem Int Ed Engl ; 62(27): e202304413, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37160619

RESUMO

Designing highly efficient and stable electrode-electrolyte interface for hydrogen peroxide (H2 O2 ) electrosynthesis remains challenging. Inhibiting the competitive side reaction, 4 e- oxygen reduction to H2 O, is essential for highly selective H2 O2 electrosynthesis. Instead of hindering excessive hydrogenation of H2 O2 via catalyst modification, we discover that adding a hydrogen-bond acceptor, dimethyl sulfoxide (DMSO), to the KOH electrolyte enables simultaneous improvement of the selectivity and activity of H2 O2 electrosynthesis. Spectral characterization and molecular simulation confirm that the formation of hydrogen bonds between DMSO and water molecules at the electrode-electrolyte interface can reduce the activity of water dissociation into active H* species. The suitable H* supply environment hinders excessive hydrogenation of the oxygen reduction reaction (ORR), thus improving the selectivity of 2 e- ORR and achieving over 90 % selectivity of H2 O2 . This work highlights the importance of regulating the interfacial hydrogen-bond environment by organic molecules as a means of boosting electrochemical performance in aqueous electrosynthesis and beyond.

15.
J Am Chem Soc ; 144(14): 6613-6622, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35380035

RESUMO

Electrocatalytic reactions occur in the nanoscale space at the electrified electrode-electrolyte interface. It is well known that the electrode-electrolyte interface, also called as interfacial microenvironment, is difficult to investigate due to the interference of bulk electrolytes and its dynamic evolution in response to applied bias potential. Here, we employ electrochemical co-reduction of CO2 and H2O on commercial Ag electrodes as a model system, in conjunction with quaternary ammonium cationic surfactants as electrolyte additives. We probe bias-potential-driven dynamic response of the interfacial microenvironment as well as the mechanistic origin of catalytic selectivity. By virtue of comprehensive in situ vibrational spectroscopy, electrochemical impedance spectroscopy, and molecular dynamics simulations, it is revealed that the structure of surfactants is dynamically changed from a random distribution to a nearly ordered assembly with increasing bias potential. The nearly ordered surfactant assembly regulates the interfacial water environment by repelling isolated water and suppressing water orientation into an ordered structure as well as promotes CO2 enrichment at the electrified interface. Eventually, the formed hydrophobic-aerophilic interface microenvironment reduces the activity of water dissociation and increases the selectivity of CO2 electroreduction to CO. These results highlight the importance of regulating the interfacial microenvironment by organic additives as a means of boosting the electrochemical performance in electrosynthesis and beyond.

16.
Small ; 18(15): e2108092, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35229452

RESUMO

As the most successful anode material for sodium-ion batteries, hard carbon has attracted extensive attention from researchers. However, its storage mechanism is still controversial. In this paper, a solvent co-intercalation mechanism into hard carbon is proposed and is proved by in situ XRD and ex situ TEM XPS results successfully. Thanks to the co-intercalation of solvent, the platform capacity of hard carbon maintains well at very high current densities. It can even exhibit 245 mAh g-1 at 5 A g-1 , which is the best rate performance obtained for hard carbon anode as far as it is known. The full battery assembled with Na3 V2 (PO4 )3 has a high energy density of 157 Wh kg-1 at 3800 W kg-1 (relative to the electrode). This finding brings new insights with regard to the design of hard carbon materials and sodium storage mechanisms.

17.
Small ; 18(1): e2105927, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34862843

RESUMO

The development of novel redox-active polymers for sustainable sodium ion batteries (SIBs) has captured growing attention, but battery performance has been significantly limited by poor reversible specific capacities, where the majority of aromatic C6-benzene linkages are redox inactive. Here, a simple, yet efficient approach to improve sodium (Na) storage on these C6-benzene rings within a porous polymeric framework by rationally regulating their steric hindrance is reported. Decreasing intrinsic hindrance affords a significant improvement in redox reaction kinetics within the porous architecture, thereby facilitating the acceptance of Na ions on these functionalized benzene rings and boosting the SIB performance. As a result, the modulate porous framework exhibits an exceptional battery capacity of 376 mAh g-1 after 1000 cycles at 1.0 A g-1 , which is ≈1.5 times larger than that of the pristine framework. Furthermore, the performance can reach as high as 510 mAh g-1 at 0.1 A g-1 , comparable to that of the best-performing polymeric electrodes. The simple modulation approach not only enables Na storage modulation on functionalized C6-benzene rings, but also simultaneously provides a means to extend the understanding of the structure-property relationship and facilitate new possibilities for organic SIBs.

18.
Small ; 18(3): e2104399, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837312

RESUMO

Lead halide perovskite nanocrystals (NCs) exhibit excellent optoelectronic performance, however, the broad application is limited by their poor stability. Herein, a strategy for stable core-shell structured bismuth-doped lead halide perovskite NCs is reported. The stable core-shell perovskite NCs are prepared based on heterovalent substitutions and surface segregation effect. Core-shell features are revealed through advanced characterization and structure analyses. Meanwhile, the transfer of carriers between the core and the shell is observed by ultrafast transient absorption spectroscopy. The core-shell structured perovskite NCs exhibit outstanding structure stability and retain 97% of the original photocatalytic efficiency after cycle experiments under moisture ambient and light irradiation. Such a core-shell structure constructs gradient energy levels. These findings are expected to facilitate the development of stable lead halide perovskite devices.

19.
Small ; 18(18): e2200720, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35373471

RESUMO

Copper (Cu)-based metal-organic frameworks (MOFs) and MOF-derived catalysts are well studied for electroreduction of carbon dioxide (CO2 ); however, the effects of organic linkers for the selectivity of CO2 reduction are still unrevealed. Here, a series of Cu-based MOF-derived catalysts is investigated with different organic linkers appended, named X-Cu-BDC (BDC = 1,4-benzenedicarboxylic acid, X = NH2 , OH, H, F, and 2F). It is found that the linkers affect the faradaic efficiency (FE) for C2 products with an order of NH2  < OH < bare Cu-BDC < F < 2F, thus tuning the FEC2 :FEC1 ratios from 0.6 to 3.8. As a result, the highest C2 FE of ≈63% at a current density of 150 mA cm-2 on 2F-Cu-BDC derived catalyst is achieved. Using operando Raman measurements, it is revealed that the MOF derives to Cu2 O during eCO2 RR but organic linkers are stable. The fluorine group in organic linker can promote the H2 O dissociation to *H species, further facilitating the hydrogenation of *CO to *CHO that helps CC coupling.

20.
Nano Lett ; 21(1): 492-499, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33258608

RESUMO

Developing low-cost and efficient electrocatalysts to accelerate oxygen evolution reaction (OER) kinetics is vital for water and carbon-dioxide electrolyzers. The fastest-known water oxidation catalyst, Ni(Fe)OxHy, usually produced through an electrochemical reconstruction of precatalysts under alkaline condition, has received substantial attention. However, the reconstruction in the reported catalysts usually leads to a limited active layer and poorly controlled Fe-activated sites. Here, we demonstrate a new electrochemistry-driven F-enabled surface-reconstruction strategy for converting the ultrathin NiFeOxFy nanosheets into an Fe-enriched Ni(Fe)OxHy phase. The activated electrocatalyst shows a low OER overpotential of 218 ± 5 mV at 10 mA cm-2 and a low Tafel slope of 31 ± 4 mV dec-1, which is among the best for NiFe-based OER electrocatalysts. Such superior performance is caused by the effective formation of the Fe-enriched Ni(Fe)OxHy active-phase that is identified by operando Raman spectroscopy and the substantially improved surface wettability and gas-bubble-releasing behavior.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa