Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 85(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28193634

RESUMO

Insights into the host-microbial virulence factor interaction, especially the immune signaling mechanisms, could provide novel prevention and treatment options for pneumococcal diseases. Streptococcus pneumoniae endopeptidase O (PepO) is a newly discovered and ubiquitously expressed pneumococcal virulence protein. A PepO-mutant strain showed impaired adherence to and invasion of host cells compared with the isogenic wild-type strain. It is still unknown whether PepO is involved in the host defense response to pneumococcal infection. Here, we demonstrated that PepO could enhance phagocytosis of Streptococcus pneumoniae and Staphylococcus aureus by peritoneal exudate macrophages (PEMs). Further studies showed that PepO stimulation upregulated the expression of microRNA-155 (miR-155) in PEMs in a time- and dose-dependent manner. PepO-induced enhanced phagocytosis was decreased in cells transfected with an inhibitor of miR-155, while it was increased in cells transfected with a mimic of miR-155. We also revealed that PepO-induced upregulation of miR-155 in PEMs was mediated by Toll-like receptor 2 (TLR2)-NF-κB signaling and that the increased expression of miR-155 downregulated expression of SHIP1. Taken together, these results indicate that PepO induces upregulation of miR-155 in PEMs, contributing to enhanced phagocytosis and host defense response to pneumococci and Staphylococcus aureus.


Assuntos
Proteínas de Bactérias/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Metaloendopeptidases/imunologia , MicroRNAs/genética , Infecções Pneumocócicas/genética , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Fagocitose , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Infecções Pneumocócicas/microbiologia , Interferência de RNA , Transdução de Sinais , Staphylococcus aureus/imunologia
2.
Am J Physiol Lung Cell Mol Physiol ; 310(2): L133-41, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26608531

RESUMO

Lung tissue cells play an active role in the pathogenesis of pulmonary inflammatory diseases by releasing a variety of cytokines and chemokines. However, how lung tissue cells respond to microbial stimuli during pulmonary infections remains unclear. In this study, we found that patients with community-acquired pneumonia displayed increased IL-27 levels in bronchoalveolar lavage fluid and serum. We subsequently examined the immunopathological mechanisms for the activation of primary human lung fibroblasts and bronchial epithelial cells by IL-27. We demonstrated that IL-27 priming enhanced LPS-induced production of IL-6 and IL-8 from lung fibroblasts and bronchial epithelia cells via upregulating Toll-like receptor-4 (TLR4) expression. IL-27 upregulated TLR4 expression in lung fibroblasts through activation of Janus-activated kinase (JAK) and Jun NH2-terminal kinase (JNK) signaling pathways, and inhibition of the JAK pathway could partially decrease IL-27-induced TLR4 expression, while inhibition of JNK pathway could completely suppress IL-27-induced TLR4 expression. Our data suggest that IL-27 modulates innate immunity of lung tissue cells through upregulating TLR4 expression during pulmonary infections.


Assuntos
Fibroblastos/citologia , Imunidade Inata/efeitos dos fármacos , Interleucina-27/farmacologia , Pulmão/imunologia , Receptor 4 Toll-Like/metabolismo , Células Epiteliais/metabolismo , Fibroblastos/efeitos dos fármacos , Humanos , Imunidade Inata/imunologia , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Receptor 4 Toll-Like/imunologia , Ativação Transcricional , Regulação para Cima/efeitos dos fármacos
3.
J Infect Dis ; 211(10): 1616-27, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25489003

RESUMO

BACKGROUND: Interleukin 4 (IL-4) is an important cytokine that may modulate development of secondary bacterial pneumonia during sepsis-induced immunosuppression. METHODS: We established an experimental model of cecal ligation and puncture (CLP)-induced sublethal polymicrobial sepsis followed by secondary Pseudomonas aeruginosa pulmonary infection, RESULTS: IL-4-deficient mice that underwent CLP were resistant to secondary pulmonary P. aeruginosa infection. As compared to wild-type mice, IL-4 knockout (KO) mice displayed improved survival and better bacterial clearance. Furthermore, IL-4 KO mice exhibited enhanced lung inflammation, neutrophil recruitment to airspaces, and elevated pulmonary cytokine production, with significantly increased tumor necrosis factor α (TNF-α) production. Neutralization of TNF-α could reverse the enhanced protection against secondary P. aeruginosa pneumonia in septic IL-4 KO mice, indicating that the resistance of septic IL-4 KO mice to secondary bacterial pneumonia was partially mediated by TNF-α. In addition, IL-4 priming displayed marked impairment of the ability of alveolar macrophages to phagocytose and kill P. aeruginosa in vitro, and this defect was associated with decreased activation of Akt, JNK, p38MAPK, and ERK intracellular signaling pathways by IL-4. Finally, neutralization of IL-4 in septic mice could improve survival and clearance of bacteria from the lungs of septic mice infected with P. aeruginosa. CONCLUSIONS: Our findings provide new insight for immunopathologic mechanisms of sepsis-induced secondary bacterial pneumonia.


Assuntos
Tolerância Imunológica , Interleucina-4/deficiência , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/isolamento & purificação , Sepse/complicações , Animais , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/microbiologia , Fator de Necrose Tumoral alfa/imunologia
4.
Immunology ; 144(2): 282-90, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25157456

RESUMO

Airway inflammatory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are associated with elevated expression of interleukin-32 (IL-32), a recently described cytokine that appears to play a critical role in inflammation. However, so far, the regulation of pulmonary IL-32 production has not been fully established. We examined the expression of IL-32 by tumour necrosis factor-α (TNF-α) in primary human lung fibroblasts. Human lung fibroblasts were cultured in the presence or absence of TNF-α and/or other cytokines/Toll-like receptor (TLR) ligands or various signalling molecule inhibitors to analyse the expression of IL-32 by quantitative RT-PCR and ELISA. Next, activation of Akt and c-Jun N-terminal kinase (JNK) signalling pathways was investigated by Western blot. Interleukin-32 mRNA of four spliced isoforms (α, ß, γ and δ) was up-regulated upon TNF-α stimulation, which was associated with a significant IL-32 protein release from TNF-α-activated human lung fibroblasts. The combination of interferon-γ and TNF-α induced enhanced IL-32 release in human lung fibroblasts, whereas IL-4, IL-17A, IL-27 and TLR ligands did not alter IL-32 release in human lung fibroblasts either alone, or in combination with TNF-α. Furthermore, the activation of Akt and JNK pathways regulated TNF-α-induced IL-32 expression in human lung fibroblasts, and inhibition of the Akt and JNK pathways was able to suppress the increased release of IL-32 to nearly the basal level. These data suggest that TNF-α may be involved in airway inflammation via the induction of IL-32 by activating Akt and JNK signalling pathways. Therefore, the TNF-α/IL-32 axis may be a potential therapeutic target for airway inflammatory diseases.


Assuntos
Inflamação/imunologia , Interleucinas/genética , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia , Asma/imunologia , Células Cultivadas , Fibroblastos/citologia , Humanos , Interferon gama/farmacologia , Interleucina-17/farmacologia , Interleucina-4/farmacologia , Interleucinas/biossíntese , Interleucinas/farmacologia , Pulmão/citologia , Isoformas de Proteínas/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , RNA Mensageiro/biossíntese , Proteínas Recombinantes/farmacologia , Receptores Toll-Like/metabolismo , Regulação para Cima
5.
Am J Transl Res ; 15(6): 4164-4171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434850

RESUMO

OBJECTIVE: To clarify the role of coagulation and fibrinolysis as well as the level of neutrophil extracellular traps (NETs) in patients with sepsis, and to explore their clinical significance in identifying the disease and predicting the prognosis. METHODS: In this retrospective study, the clinical data from 120 patients with sepsis admitted to People's Hospital of Changshou from January 2019 to December 2021 were analyzed. The patients were divided into a survival group and a death group according to the survival of patients within 28 days of admission. Another 120 patients with common bacterial infection were selected as the bacterial group and 120 healthy subjects who underwent physical examination in our hospital during the same period were selected as the healthy group. NETs, coagulation and fibrinolysis indexes, prothrombin time (PT), fibrinogen (FIB), D-dimer level, International Normalized Ratio (INR), Acute Physiology and Chronic Health Evaluation (APACHE) II score, and sequential organ failure assessment (SOFA) score of the patients with sepsis were compared with those of bacterial group and healthy group. Correlations between these measures were analyzed, and the predictive value of NETs for survival in patients with sepsis was assessed. RESULTS: Compared with bacterial group and healthy group, the levels of serum NETs, PT, FIB, D-dimer, and INR value in sepsis patients were significantly increased. The level of NETs was positively associated with APACHE II score, SOFA score, PT, FIB, D-dimer, and INR. INR showed good performance in predicting death within 28 days after admission in sepsis patients. CONCLUSION: The NETs and coagulation indexes have high predictive value for the prognosis of patients with sepsis.

6.
Front Immunol ; 8: 686, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659923

RESUMO

Subunit vaccines that are poorly immunogenic are often combined with adjuvants for immunization. Our previous research identified a pneumolysin variant (ΔA146Ply), a Toll-like receptor 4 agonist, that was an effective adjuvant in the protection of fusion protein DnaJ-ΔA146Ply against mucosal Streptococcus pneumoniae infections. For pneumococcal vaccines, World Health Organization recommend injection as a regular vaccination approach. Subcutaneous immunization is a common and effective method of injection, so we explored the immunity mechanism of subcutaneous immunization with DnaJ-ΔA146Ply. We found that mice immunized subcutaneously with fusion proteins ΔA146Ply-DnaJ and DnaJ-ΔA146Ply produced a higher anti-DnaJ IgG titer than when DnaJ alone was administered. DnaJ-ΔA146Ply induced both B-cell and T-cell-dependent protection against both colonization and lethal pneumococcal infections. Levels of IFN-γ, IL-4, and IL-17A were also elevated in DnaJ-ΔA146Ply immunized mice. However, all these effects were negated in TLR4-/- mice compared to WT mice immunized with DnaJ-ΔA146Ply. B-cell-deficient µMT mice, nude mice, IFN-γ-/-, and IL-4-/- mice immunized with DnaJ-ΔA146Ply could not resist infection with pneumococci. IL-17A-/- and TLR4-/- mice did not benefit from DnaJ-ΔPly immunization in colonization experiments although their survival was not impaired compared with WT mice. Collectively, our data indicated that ΔA146Ply can be a potential subcutaneous adjuvant, and the DnaJ-ΔA146Ply fusion protein induces both humoral and cellular immune response to resist S. pneumoniae infection. The protective effect of colonization also depends on TLR4.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa