Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Nanobiotechnology ; 22(1): 250, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750519

RESUMO

The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.


Assuntos
Regeneração Óssea , Fosfatos de Cálcio , Osteogênese , Osteossarcoma , Alicerces Teciduais , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Animais , Regeneração Óssea/efeitos dos fármacos , Alicerces Teciduais/química , Coelhos , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Osteogênese/efeitos dos fármacos , Poliésteres/química , Humanos , Diferenciação Celular/efeitos dos fármacos , Neoplasias Ósseas/patologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/terapia , Linhagem Celular Tumoral , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Células de Schwann/efeitos dos fármacos , Nanofibras/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Selênio/química , Selênio/farmacologia
2.
J Transl Med ; 21(1): 711, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817199

RESUMO

BACKGROUND: Extracellular matrix stiffness is emerging as a crucial mechanical cue that drives the progression of various diseases, such as cancer, fibrosis, and inflammation. The matrix stiffness of the nucleus pulposus (NP) tissues increase gradually during intervertebral disc degeneration (IDD), while the mechanism through which NP cells sense and react to matrix stiffness remains unclear. In addition, mitochondrial dynamics play a key role in various cellular functions. An in-depth investigation of the pathogenesis of IDD can provide new insights for the development of effective therapies. In this study, we aim to investigate the effects of matrix stiffness on mitochondrial dynamics in IDD. METHODS: To build the gradient stiffness model, NP cells were cultured on polystyrene plates with different stiffness. Western blot analysis, and immunofluorescence staining were used to detect the expression of mitochondrial dynamics-related proteins. Flow cytometry was used to detect the mitochondrial membrane potential and intracellular Ca2+ levels. Apoptosis related proteins, ROS level, and TUNEL staining were performed to assess the effect of substrate stiffness on NP cells. RESULTS: Stiff substrate increased phosphorylation of dynamin-related protein 1 (Drp1) at Ser616 by activating extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, which promoted mitochondrial fission and apoptosis in NP cells. Furthermore, Piezo1 activation was involved in the regulation of the post-translational modifications of Drp1 and mitochondrial fission caused by matrix stiffness. Inhibition of Piezo1 and ERK1/2 can effectively reduce stiffness-induced ROS elevation and apoptosis in NP cells. CONCLUSIONS: Our results revealed that stiff substrate causes Piezo1 activation and Ca2+ influx, results in ERK1/2 activation and phosphorylation of Drp1 at S616, and finally leads to mitochondrial fission and apoptosis in NP cells. These findings reveal a new mechanism of mechanotransduction in NP cells, providing novel insights into the development of therapies for treating IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/patologia , Dinâmica Mitocondrial , Mecanotransdução Celular , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Dinaminas/metabolismo , Dinaminas/farmacologia , Disco Intervertebral/patologia
3.
Small ; 18(8): e2105775, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34889522

RESUMO

Osteomyelitis is considered as the most serious bone infection, which can lead to the bone destruction or fatal sepsis. Clinical treatments through frequent antibiotics administration and surgical debridement bring inevitable side effects including drug-resistance and disfigurements. It is urgent to develop an antibiotics-free and rapid strategy to treat osteomyelitis. Herein, a bifunctional sonosensitizer that consists of porphyrin-like Zn single-atom catalysts (g-ZnN4 ) and MoS2 quantum dots is developed, which exhibits excellent sonodynamic antibacterial efficiency and osteogenic ability. It is found that the construction of heterogeneous interfaces of g-ZnN4 -MoS2 fully activates the adsorbed O2 due to the increased interface charge transfer, enhanced spin-flip, and reduced activation energy of O2 . The generated 1 O2 can kill methicillin-resistant Staphylococcus aureus (MRSA) with an antibacterial efficiency of 99.58% under 20 min of ultrasound (US) irradiation. The Zn single atoms immobilized in g-ZnN4 can be released steadily in the form of Zn2+ for 28 days within safe concentration, realizing the great osteoinductive ability of such a sonosensitizer. For the treatment of MRSA-infected osteomyelitis, the inflammation and bone loss can be significantly suppressed through sonodynamic ion therapy. This work provides another strategy for developing high efficiency sonosensitizer through ultrasound interfacial engineering.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteomielite , Terapia por Ultrassom , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Molibdênio/farmacologia , Osteomielite/tratamento farmacológico , Ultrassom , Zinco/farmacologia
4.
Small ; 18(30): e2201056, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35652171

RESUMO

Bone repair in real time is a challenging medical issue for elderly patients; this is mainly because aged bone marrow mesenchymal stem cells (BMSCs) possess limited osteogenesis potential and repair capacity. In this study, triboelectric stimulation technology is used to achieve bone repair via mechanosensation of Piezo1 by fabricating a wearable pulsed triboelectric nanogenerator (WP-TENG) driven by human body movement. A peak value of 30 µA has the optimal effects to rejuvenate aged BMSCs, enhance their osteogenic differentiation, and promote human umbilical vein endothelial cell tube formation. Further, previous studies demonstrate that triboelectric stimulation of a WP-TENG can reinforce osteogenesis of BMSCs and promote the angiogenesis of human umbilical vein endothelial cells (HUVECs). Mechanistically, aged BMSCs are rejuvenated by triboelectric stimulation via the mechanosensitive ion channel Piezo1. Thus, the osteogenesis potential of BMSCs is enhanced and the tube formation capacity of HUVECs is improved, which is further confirmed by augmented bone repair and regeneration in in vivo investigations. This study provides a potential signal transduction mechanism for rejuvenating aged BMSCs and a theoretical basis for bone regeneration using triboelectric stimulation generated by a WP-TENG.


Assuntos
Células-Tronco Mesenquimais , Dispositivos Eletrônicos Vestíveis , Idoso , Células da Medula Óssea , Diferenciação Celular/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Canais Iônicos , Osteogênese
5.
Acta Pharmacol Sin ; 43(7): 1793-1802, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34754093

RESUMO

Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease with few treatment options. The pathogenesis of OA is characterized by sustained inflammation, oxidative stress and chondrocyte apoptosis that eventually lead to cartilage degradation and joint dysfunction. In the present study, we identified a synthetic triterpenoid CDDO-Im(1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole) as an activator of Nrf2 (nuclear factor erythroid 2-related factor 2) that displayed strong anti-OA effects. We showed that CDDO-Im (20 nM) significantly alleviated TNF-α-induced apoptosis of primary human chondrocytes and extracellular matrix degradation. In a mouse OA model incurred by DMM (destabilization of medial meniscus), administration of CDDO-Im (2.5 mg/kg, ip, every other day for 8 weeks) effectively reduced knee joint cartilage erosion and serum levels of inflammatory cytokines IL-1ß and IL-6. We revealed that CDDO-Im (20 nM) significantly enhanced autophagy activities in chondrocytes, whereas the autophagy inhibition by chloroquine (CQ, 50 µM) or 3-methyladenine (3-MA, 5 mM) abrogated the anti-apoptosis and chondroprotective effects of CDDO-Im in TNF-α-treated chondrocytes. Moreover, we confirmed that CDDO-Im (1-20 nM) dose-dependently activated Nrf2 pathway in TNF-α-treated chondrocytes, and its chondroprotective and autophagy-enhancing effects were significantly diminished when Nrf2 signaling was blocked by Nrf2 inhibitor ML385 (20 µM) or siRNA-mediated Nrf2 knockdown. Together, our results demonstrate that CDDO-Im exhibits prominent chondroprotective and anti-OA activities owing to its Nrf2 activation and autophagy-enhancing properties, which might provide new insights into the strategies of OA clinical prevention and treatment.


Assuntos
Fator 2 Relacionado a NF-E2 , Osteoartrite , Animais , Camundongos , Autofagia , Condrócitos , Imidazóis/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/análogos & derivados , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
6.
Acta Biochim Biophys Sin (Shanghai) ; 54(4): 524-536, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35607959

RESUMO

Accumulating evidence indicates that ER-phagy serves as a key adaptive regulatory mechanism in response to various stress conditions. However, the exact mechanisms underlying ER-phagy in the pathogenesis of intervertebral disc degeneration remain largely unclear. In the present study, we demonstrated that RETREG1-mediated ER-phagy is induced by glucose deprivation (GD) treatment, along with ER stress activation and cell function decline. Importantly, ER-phagy was shown to be crucial for cell survival under GD conditions. Furthermore, ER stress was suggested as an upstream event of ER-phagy upon GD treatment and upregulation of ER-phagy could counteract the ER stress response. Therefore, our findings indicate that RETREG1-mediated ER-phagy activation protects against GD treatment-induced cell injury via modulating ER stress in human nucleus pulposus cells.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Apoptose , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Glucose/metabolismo , Humanos , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/patologia
7.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35163637

RESUMO

Intervertebral disc (IVD) degeneration (IDD) is a pathological process that commonly occurs throughout the human life span and is a major cause of lower back pain. Better elucidation of the molecular mechanisms involved in disc degeneration could provide a theoretical basis for the development of lumbar disc intervention strategies. In recent years, extracellular matrix (ECM) homeostasis has received much attention due to its relevance to the mechanical properties of IVDs. ECM proteolysis mediated by a variety of proteases is involved in the pathological process of disc degeneration. Here, we discuss in detail the relationship between the IVD as well as the ECM and the role of ECM proteolysis in the degenerative process of the IVD. Targeting ECM proteolysis-associated proteases may be an effective means of intervention in IDD.


Assuntos
Matriz Extracelular/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Dor Lombar/metabolismo , Proteólise , Animais , Humanos
8.
Research (Wash D C) ; 7: 0350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585329

RESUMO

Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain and a leading contributor to disability. IVDD progression involves pathological shifts marked by low-grade inflammation, extracellular matrix remodeling, and metabolic disruptions characterized by heightened glycolytic pathways, mitochondrial dysfunction, and cellular senescence. Extensive posttranslational modifications of proteins within nucleus pulposus cells and chondrocytes play crucial roles in reshaping the intervertebral disc phenotype and orchestrating metabolism and inflammation in diverse contexts. This review focuses on the pivotal roles of phosphorylation, ubiquitination, acetylation, glycosylation, methylation, and lactylation in IVDD pathogenesis. It integrates the latest insights into various posttranslational modification-mediated metabolic and inflammatory signaling networks, laying the groundwork for targeted proteomics and metabolomics for IVDD treatment. The discussion also highlights unexplored territories, emphasizing the need for future research, particularly in understanding the role of lactylation in intervertebral disc health, an area currently shrouded in mystery.

9.
Nat Commun ; 15(1): 5736, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982049

RESUMO

Excessive exercise is an etiological factor of intervertebral disc degeneration (IVDD). Engineered extracellular vesicles (EVs) exhibit excellent therapeutic potential for disease-modifying treatments. Herein, we fabricate an exercise self-powered triboelectric-responsive microneedle (MN) assay with the sustainable release of optogenetically engineered EVs for IVDD repair. Mechanically, exercise promotes cytosolic DNA sensing-mediated inflammatory activation in senescent nucleus pulposus (NP) cells (the master cell population for IVD homeostasis maintenance), which accelerates IVDD. TREX1 serves as a crucial nuclease, and disassembly of TRAM1-TREX1 complex disrupts the subcellular localization of TREX1, triggering TREX1-dependent genomic DNA damage during NP cell senescence. Optogenetically engineered EVs deliver TRAM1 protein into senescent NP cells, which effectively reconstructs the elimination function of TREX1. Triboelectric nanogenerator (TENG) harvests mechanical energy and triggers the controllable release of engineered EVs. Notably, an optogenetically engineered EV-based targeting treatment strategy is used for the treatment of IVDD, showing promising clinical potential for the treatment of degeneration-associated disorders.


Assuntos
Vesículas Extracelulares , Degeneração do Disco Intervertebral , Agulhas , Núcleo Pulposo , Optogenética , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Núcleo Pulposo/metabolismo , Optogenética/métodos , Optogenética/instrumentação , Humanos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Senescência Celular , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Ratos , Dano ao DNA , Camundongos , Masculino , Modelos Animais de Doenças , Ratos Sprague-Dawley
10.
J Clin Invest ; 134(6)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38488012

RESUMO

As the leading cause of disability worldwide, low back pain (LBP) is recognized as a pivotal socioeconomic challenge to the aging population and is largely attributed to intervertebral disc degeneration (IVDD). Elastic nucleus pulposus (NP) tissue is essential for the maintenance of IVD structural and functional integrity. The accumulation of senescent NP cells with an inflammatory hypersecretory phenotype due to aging and other damaging factors is a distinctive hallmark of IVDD initiation and progression. In this study, we reveal a mechanism of IVDD progression in which aberrant genomic DNA damage promoted NP cell inflammatory senescence via activation of the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) axis but not of absent in melanoma 2 (AIM2) inflammasome assembly. Ataxia-telangiectasia-mutated and Rad3-related protein (ATR) deficiency destroyed genomic integrity and led to cytosolic mislocalization of genomic DNA, which acted as a powerful driver of cGAS/STING axis-dependent inflammatory phenotype acquisition during NP cell senescence. Mechanistically, disassembly of the ATR-tripartite motif-containing 56 (ATR-TRIM56) complex with the enzymatic liberation of ubiquitin-specific peptidase 5 (USP5) and TRIM25 drove changes in ATR ubiquitination, with ATR switching from K63- to K48-linked modification, c thereby promoting ubiquitin-proteasome-dependent dynamic instability of ATR protein during NP cell senescence progression. Importantly, an engineered extracellular vesicle-based strategy for delivering ATR-overexpressing plasmid cargo efficiently diminished DNA damage-associated NP cell senescence and substantially mitigated IVDD progression, indicating promising targets and effective approaches to ameliorate the chronic pain and disabling effects of IVDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Idoso , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Envelhecimento , Senescência Celular , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Disco Intervertebral/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
11.
Imeta ; 2(2): e86, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38868436

RESUMO

In recent decades, accumulating research on the interactions between microbiome homeostasis and host health has broadened new frontiers in delineating the molecular mechanisms of disease pathogenesis and developing novel therapeutic strategies. By transporting proteins, nucleic acids, lipids, and metabolites in their versatile bioactive molecules, extracellular vesicles (EVs), natural bioactive cell-secreted nanoparticles, may be key mediators of microbiota-host communications. In addition to their positive and negative roles in diverse physiological and pathological processes, there is considerable evidence to implicate EVs secreted by bacteria (bacterial EVs [BEVs]) in the onset and progression of various diseases, including gastrointestinal, respiratory, dermatological, neurological, and musculoskeletal diseases, as well as in cancer. Moreover, an increasing number of studies have explored BEV-based platforms to design novel biomedical diagnostic and therapeutic strategies. Hence, in this review, we highlight the recent advances in BEV biogenesis, composition, biofunctions, and their potential involvement in disease pathologies. Furthermore, we introduce the current and emerging clinical applications of BEVs in diagnostic analytics, vaccine design, and novel therapeutic development.

12.
Biomaterials ; 302: 122295, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666101

RESUMO

The therapeutic effect of cancer immunotherapy is restrained by limited patient response rate caused by 'cold' tumors with an intrinsically immunosuppressive tumor microenvironment (TME). Activating stimulator of interferon genes (STING) confers promising antitumor immunity even in 'cold' tumors, but the further promotion of STING agonists is hindered by undesirable toxicity, low specificity and lack of controllability. Herein, an ultrasound-controllable cGAS-STING amplifying nanoagonist was constructed by coordinating mitochondria-targeting ligand triphenylphosphonium (TPP) to sonodynamic cobalt organic framework nanosheets (TPP@CoTCPP). The Co ions specifically amplify STING activation only when cytosolic mitochondrial DNA leakage is caused by sonocatalysis-induced ROS production and sensed by cGAS. A series of downstream innate immune proinflammatory responses induced by local cGAS-STING pathway activation under spatiotemporal ultrasound stimulation efficiently prime the antitumor T-cell response against bone metastatic tumor, a typical immunosuppressive tumor. We also found that the coordination of TPP augments the sonodynamic effect of CoTCPP nanosheets by reducing the band gap, improving O2 adsorption and enhancing electron transfer. Overall, our study demonstrates that the targeted and amplified cGAS-STING activation in cancer cell controlled by spatiotemporal ultrasound irradiation boosts high-efficiency sonodynamic-ionicimmunotherapy against immunosuppressive tumor.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Adsorção , Cobalto/farmacologia , Citosol , DNA Mitocondrial , Imunoterapia , Microambiente Tumoral
13.
Adv Healthc Mater ; 12(27): e2301151, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37421228

RESUMO

Severe bone defects accompanied by vascular and peripheral nerve injuries represent a huge orthopedic challenge and are often accompanied by the risk of infection. Thus, biomaterials with antibacterial and neurovascular regeneration properties are highly desirable. Here, a newly designed biohybrid biodegradable hydrogel (GelMA) containing copper ion-modified germanium-phosphorus (GeP) nanosheets, which act as neuro-vascular regeneration and antibacterial agents, is designed. The copper ion modification process serves to improve the stability of the GeP nanosheets and offers a platform for the sustained release of bioactive ions. Study findings show that GelMA/GeP@Cu has effective antibacterial properties. The integrated hydrogel can significantly boost the osteogenic differentiation of bone marrow mesenchymal stem cells, facilitate angiogenesis in human umbilical vein endothelial cells, and up-regulate neural differentiation-related proteins in neural stem cells in vitro. In vivo, in the rat calvarial bone defect mode, the GelMA/GeP@Cu hydrogel is found to enhance angiogenesis and neurogenesis, eventually contributing to bone regeneration. These findings indicate that in the field of bone tissue engineering, GelMA/GeP@Cu can serve as a valuable biomaterial for neuro-vascularized bone regeneration and infection prevention.


Assuntos
Germânio , Osteogênese , Ratos , Humanos , Animais , Hidrogéis/farmacologia , Cobre/farmacologia , Germânio/farmacologia , Fósforo/farmacologia , Regeneração Óssea , Materiais Biocompatíveis/farmacologia , Células Endoteliais da Veia Umbilical Humana , Antibacterianos/farmacologia
14.
Exploration (Beijing) ; 3(4): 20220090, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37933231

RESUMO

Triboelectric nanogenerators (TENGs) are new energy collection devices that have the characteristics of high efficiency, low cost, miniaturization capability, and convenient manufacture. TENGs mainly utilize the triboelectric effect to obtain mechanical energy from organisms or the environment, and this mechanical energy is then converted into and output as electrical energy. Bioelectricity is a phenomenon that widely exists in various cellular processes, including cell proliferation, senescence, apoptosis, as well as adjacent cells' communication and coordination. Therefore, based on these features, TENGs can be applied in organisms to collect energy and output electrical stimulation to act on cells, changing their activities and thereby playing a role in regulating cellular function and interfering with cellular fate, which can further develop into new methods of health care and disease intervention. In this review, we first introduce the working principle of TENGs and their working modes, and then summarize the current research status of cellular function regulation and fate determination stimulated by TENGs, and also analyze their application prospects for changing various processes of cell activity. Finally, we discuss the opportunities and challenges of TENGs in the fields of life science and biomedical engineering, and propose a variety of possibilities for their potential development direction.

15.
Cell Death Differ ; 30(9): 2135-2150, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37605006

RESUMO

Impaired transcription factor EB (TFEB) function and deficient autophagy activity have been shown to aggravate intervertebral disc (IVD) degeneration (IDD), yet the underlying mechanisms remain less clear. Protein posttranslational modifications (PTMs) are critical for determining TFEB trafficking and transcriptional activity. Here, we demonstrate that TFEB activity is controlled by protein methylation in degenerated nucleus pulposus cells (NPCs), even though TFEB itself is incapable of undergoing methylation. Specifically, protein phosphatase 1 catalytic subunit alpha (PPP1CA), newly identified to dephosphorylate TFEB, contains a K141 mono-methylated site. In degenerated NPCs, increased K141-methylation of PPP1CA disrupts its interaction with TEFB and subsequently blocks TEFB dephosphorylation and nuclear translocation, which eventually leads to autophagy deficiency and NPC senescence. In addition, we found that the PPP1CA-mediated targeting of TFEB is facilitated by the protein phosphatase 1 regulatory subunit 9B (PPP1R9B), which binds with PPP1CA and is also manipulated by K141 methylation. Further proteomic analysis revealed that the protein lysine methyltransferase suppressor of variegation 3-9 homologue 2 (SUV39H2) is responsible for the K141 mono-methylation of PPP1CA. Targeting SUV39H2 effectively mitigates NPC senescence and IDD progression, providing a potential therapeutic strategy for IDD intervention.


Assuntos
Degeneração do Disco Intervertebral , Lisina , Humanos , Metilação , Degeneração do Disco Intervertebral/genética , Proteína Fosfatase 1/genética , Proteômica , Autofagia , Histona-Lisina N-Metiltransferase , Processamento de Proteína Pós-Traducional , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética
16.
Adv Healthc Mater ; 12(23): e2300458, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37022980

RESUMO

Increased tissue stiffness is associated with various pathological processes, such as fibrosis, inflammation, and aging. The matrix stiffness of the nucleus pulposus (NP) tissues increases gradually during intervertebral disc degeneration (IDD), while the mechanism through which NP cells sense and react to matrix stiffness remains unclear. In this study, the results indicate that ferroptosis is involved in stiff substrate-induced NP cell death. The expression of acyl-CoA synthetase long-chain family member 4 (ACSL4) increases in NP cells of the stiff group, which mediates lipid peroxidation and ferroptosis in NP cells. In addition, stiff substrate activates the hippo signaling cascade and induces the nuclear translocation of yes-associated protein (YAP). Interestingly, inhibition of YAP is efficient to reverse the increase of ACSL4 expression caused by matrix stiffness. Furthermore, stiff substrate suppresses the expression of N-cadherin in NP cells. N-cadherin overexpression can inhibit YAP nuclear translocation via the formation of the N-cadherin/ß-catenin/YAP complex, and reverse matrix stiffness-induced ferroptosis in NP cells. Finally, the effects of YAP inhibition and N-cadherin overexpression on IDD progression are further illustrated in animal models. These findings reveal a new mechanism of mechanotransduction in NP cells, providing novel insights into the development of therapies for the treatment of IDD.


Assuntos
Ferroptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Caderinas/metabolismo , Mecanotransdução Celular , Degeneração do Disco Intervertebral/metabolismo
17.
Autophagy ; : 1-21, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37876250

RESUMO

Intervertebral disc degeneration (IDD) is the most critical pathological factor in the development of low back pain. The maintenance of nucleus pulposus (NP) cell and intervertebral disc integrity benefits largely from well-controlled mitochondrial quality, surveilled by mitochondrial dynamics (fission and fusion) and mitophagy, but the outcome is cellular context-dependent that remain to be clarified. Our studies revealed that the loss of NLRX1 is correlated with NP cell senescence and IDD progression, which involve disordered mitochondrial quality. Further using animal and in vitro tissue and cell models, we demonstrated that NLRX1 could facilitate mitochondrial quality by coupling mitochondrial dynamic factors (p-DNM1L, L-OPA1:S-OPA1, OMA1) and mitophagy activity. Conversely, mitochondrial collapse occurred in NLRX1-defective NP cells and switched on the compensatory PINK1-PRKN pathway that led to excessive mitophagy and aggressive NP cell senescence. Mechanistically, NLRX1 was originally shown to interact with zinc transporter SLC39A7 and modulate mitochondrial Zn2+ trafficking via the formation of an NLRX1-SLC39A7 complex on the mitochondrial membrane of NP cells, subsequently orchestrating mitochondrial dynamics and mitophagy. The restoration of NLRX1 function by gene overexpression or pharmacological agonist (NX-13) treatment showed great potential for regulating mitochondrial fission with synchronous fusion and mitophagy, thus sustaining mitochondrial homeostasis, ameliorating NP cell senescence and rejuvenating intervertebral discs. Collectively, our findings highlight a working model whereby the NLRX1-SLC39A7 complex coupled mitochondrial dynamics and mitophagy activity to surveil and target damaged mitochondria for degradation, which determines the beneficial function of the mitochondrial surveillance system and ultimately rejuvenates intervertebral discs.Abbreviations: 3-MA: 3-methyladenine; Baf-A1: bafilomycin A1; CDKN1A/p21: cyclin dependent kinase inhibitor 1A; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; DNM1L/DRP1: dynamin 1 like; EdU: 5-Ethynyl-2'-deoxyuridine; HE: hematoxylin-eosin; IDD: intervertebral disc degeneration; IL1B/IL-1ß: interleukin 1 beta; IL6: interleukin 6; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MKI67/Ki67: marker of proliferation Ki-67; LBP: low back pain; MMP: mitochondrial membrane potential; MFN1: mitofusin 1; MFN2: mitofusin 2; MFF: mitochondrial fission factor; NP: nucleus pulposus; NLRX1: NLR family member X1; OMA1: OMA1 zinc metallopeptidase; OPA1: OPA1 mitochondrial dynamin like GTPase; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxidative species; SASP: senescence-associated secretory phenotype; SA-GLB1/ß-gal: senescence-associated galactosidase beta 1; SO: safranin o; TBHP: tert-butyl hydroperoxide; TP53/p53: tumor protein p53; SLC39A7/ZIP7: solute carrier family 39 member 7; TOMM20: translocase of outer mitochondrial membrane 20; TIMM23: translocase of inner mitochondrial membrane 23.

18.
ACS Nano ; 17(3): 2537-2553, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36730125

RESUMO

As mesenchymal stem-cell-derived small extracellular vesicles (MSC-sEVs) have been widely applied in treatment of degenerative diseases, it is essential to improve their cargo delivery efficiency in specific microenvironments of lesions. However, the interaction between the microenvironment of recipient cells and MSC-sEVs remains poorly understood. Herein, we find that the cargo delivery efficiency of MSC-sEVs was significantly reduced under hypoxia in inflammaging nucleus pulposus cells due to activated endocytic recycling of MSC-sEVs. Hypoxia-inducible factor-1 (HIF-1)-induced upregulated RCP (also known as RAB11FIP1) is shown to promote the Rab11a-dependent recycling of internalized MSC-sEVs under hypoxia via enhancing the interaction between Rab11a and MSC-sEV. Based on this finding, si-RCP is loaded into MSC-sEVs using electroporation to overcome the hypoxic microenvironment of intervertebral disks. The engineered MSC-sEVs significantly inhibit the endocytic recycling process and exhibit higher delivery efficiency under hypoxia. In a rat model of intervertebral disk degeneration (IDD), the si-RCP-loaded MSC-sEVs successfully treat IDD with improved regenerative capacity compared with natural MSC-sEV. Collectively, the findings illustrate the intracellular traffic mechanism of MSC-sEVs under hypoxia and demonstrate that the therapeutic capacity of MSC-sEVs can be improved via inhibiting endocytic recycling. This modifying strategy may further facilitate the application of extracellular vesicles in hypoxic tissues.


Assuntos
Vesículas Extracelulares , Ratos , Animais , Hipóxia
19.
Trends Mol Med ; 28(10): 803-805, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030154

RESUMO

Intervertebral disc (IVD) degeneration is the leading cause of low back pain, which has a striking impact on numerous patients. Therefore, comprehensively illuminating the regulatory mechanisms of IVD degeneration is of great significance. Here, we discuss the latest advances in understanding the main epigenetic mechanisms regulating IVD degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Epigênese Genética , Humanos , Degeneração do Disco Intervertebral/genética
20.
Exp Mol Med ; 54(2): 129-142, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145201

RESUMO

Low back pain (LBP) is a major musculoskeletal disorder and the socioeconomic problem with a high prevalence that mainly involves intervertebral disc (IVD) degeneration, characterized by progressive nucleus pulposus (NP) cell death and the development of an inflammatory microenvironment in NP tissue. Excessively accumulated cytosolic DNA acts as a damage-associated molecular pattern (DAMP) that is monitored by the cGAS-STING axis to trigger the immune response in many degenerative diseases. NLRP3 inflammasome-dependent pyroptosis is a type of inflammatory programmed death that promotes a chronic inflammatory response and tissue degeneration. However, the relationship between the cGAS-STING axis and NLRP3 inflammasome-induced pyroptosis in the pathogenesis of IVD degeneration remains unclear. Here, we used magnetic resonance imaging (MRI) and histopathology to demonstrate that cGAS, STING, and NLRP3 are associated with the degree of IVD degeneration. Oxidative stress induced cGAS-STING axis activation and NLRP3 inflammasome-mediated pyroptosis in a STING-dependent manner in human NP cells. Interestingly, the canonical morphological and functional characteristics of mitochondrial permeability transition pore (mPTP) opening with the cytosolic escape of mitochondrial DNA (mtDNA) were observed in human NP cells under oxidative stress. Furthermore, the administration of a specific pharmacological inhibitor of mPTP and self-mtDNA cytosolic leakage effectively reduced NLRP3 inflammasome-mediated pyroptotic NP cell death and microenvironmental inflammation in vitro and degenerative progression in a rat disc needle puncture model. Collectively, these data highlight the critical roles of the cGAS-STING-NLRP3 axis and pyroptosis in the progression of IVD degeneration and provide promising therapeutic approaches for discogenic LBP.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Mitocondrial/farmacologia , Inflamassomos/metabolismo , Inflamação/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Núcleo Pulposo/metabolismo , Piroptose , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa