Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 44(1): 159-168, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27975165

RESUMO

Somatic cell nuclear transfer (SCNT) is frequently used to produce transgenic cloned livestock, but it is still associated with low success rates. To our knowledge, we are the first to report successful production of transgenic cattle that overexpress bovine adipocyte-type fatty acid binding proteins (A-FABPs) with the aid of SCNT. Intragenomic integration of additional A-FABP gene copies has been found to be positively correlated with the intramuscular fat content in different farm livestock species. First, we optimized the cloning parameters to produce bovine embryos integrated with A-FABP by SCNT, such as applied voltage field strength and pulse duration for electrofusion, morphology and size of donor cells, and number of donor cells passages. Then, bovine fibroblast cells from Qinchuan cattle were transfected with A-FABP and used as donor cells for SCNT. Hybrids of Simmental and Luxi local cattle were selected as the recipient females for A-FABP transgenic SCNT-derived embryos. The results showed that a field strength of 2.5 kV/cm with two 10-µs duration electrical pulses was ideal for electrofusion, and 4-6th generation circular smooth type donor cells with diameters of 15-25 µm were optimal for producing transgenic bovine embryos by SCNT, and resulted in higher fusion (80%), cleavage (73%), and blastocyst (27%) rates. In addition, we obtained two transgenic cloned calves that expressed additional bovine A-FABP gene copies, as detected by PCR-amplified cDNA sequencing. We proposed a set of optimal protocols to produce transgenic SCNT-derived cattle with intragenomic integration of ectopic A-FABP-inherited exon sequences.


Assuntos
Adipócitos/metabolismo , Animais Geneticamente Modificados , Clonagem de Organismos/métodos , Proteínas de Ligação a Ácido Graxo/genética , Técnicas de Transferência Nuclear , Animais , Bovinos , Tamanho Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Fibroblastos/citologia , Dosagem de Genes
2.
Front Plant Sci ; 8: 1823, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29114257

RESUMO

Rice (Oryza sativa; background Nipponbare) contains nine HKT (high-affinity K+ transport)-like genes encoding membrane proteins belonging to the superfamily of Ktr/TRK/HKT. OsHKTs have been proposed to include four selectivity filter-pore-forming domains homologous to the bacterial K+ channel KcsA, and are separated into OsHKT1s with Na+-selective activity and OsHKT2s with Na+-K+ symport activity. As a member of the OsHKT2 subfamily, OsHKT2;4 renders Mg2+ and Ca2+ permeability for yeast cells and Xenopus laevis oocytes, besides K+ and Na+. However, physiological functions related to Mg2+in planta have not yet been identified. Here we report that OsHKT2;4 from rice (O. sativa; background Nipponbare) functions as a low-affinity Mg2+ transporter to mediate Mg2+ homeostasis in plants under high-Mg2+ environments. Using the functional complementation assay in Mg2+-uptake deficient Salmonella typhimurium strains MM281 and electrophysiological analysis in X. laevis oocytes, we found that OsHKT2;4 could rescue the growth of MM281 in Mg2+-deficient conditions and induced the Mg2+ currents in oocytes at millimolar range of Mg2+. Additionally, overexpression of OsHKT2;4 to Arabidopsis mutant lines with a knockout of AtMGT6, a gene encoding the transporter protein necessary for Mg2+ adaptation in Arabidopsis, caused the Mg2+ toxicity to the leaves under the high-Mg2+ stress, but not under low-Mg2+ environments. Moreover, this Mg2+ toxicity symptom resulted from the excessive Mg2+ translocation from roots to shoots, and was relieved by the increase in supplemental Ca2+. Together, our results demonstrated that OsHKT2;4 is a low-affinity Mg2+ transporter responsible for Mg2+ transport to aerials in plants under high-Mg2+ conditions.

3.
Plant Signal Behav ; 12(8): e1356966, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28816619

RESUMO

The conserved PYR/PYL/RCAR family acts as abscisic acid (ABA) receptors for land plants to adapt to terrestrial environments. Our recent study reported that the exogenous overexpression of poplar PtPYRL1 and PtPYRL5, the PYR/PYL/RCAR orthologs, promoted the sensitivity of transgenic Arabidopsis to ABA responses. Here, we surveyed the PtPYRL family in poplar, and revealed that although the sequence and structure are relatively conserved among these receptors, PtPYRL members have differential expression patterns and the sensitivity to ABA or drought treatment, suggesting that PtPYRLs might be good candidates to a future biotechnological use to enhance poplar resistance to water-stress environments.


Assuntos
Ácido Abscísico/metabolismo , Genes de Plantas , Família Multigênica , Naftalenos/farmacologia , Populus/genética , Receptores de Superfície Celular/metabolismo , Sulfonamidas/farmacologia , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sequência Conservada , Secas , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos/genética , Populus/efeitos dos fármacos , Populus/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa