Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 95(2): 145-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26091814

RESUMO

The recent increase in nanomaterial usage has led to concerns surrounding its health risks and environmental impact. The food chain is an important pathway for high-trophic-level organisms absorbing and enriching nanomaterials. Our study therefore simulated nanometer titanium dioxide (nano-TiO2) transfer along a 2-step food chain, from the unicellular alga Scenedesmus obliquus to the water flea Daphnia magna. We also explored the effect of sodium dodecyl benzene sulfonate (SDBS) on nano-TiO2 bioavailability. A suspension of 10 mg/L nano-TiO2 was optimally dispersed in aqueous solutions by 5 mg/L SDBS. After 72 h, S. obliquus growth was not significantly affected by 10 mg/L nano-TiO2, 5 mg/L SDBS and their mixed suspension. SDBS not only improved nano-TiO2 stability in water, but also increased its uptake in S. obliquus and enhanced its accumulation in D. magna. Our study suggests that nano-TiO2 is mildly toxic to S. obliquus, and can be transferred along the aquatic food chain with a biomagnification effect.


Assuntos
Daphnia/metabolismo , Cadeia Alimentar , Nanopartículas/metabolismo , Scenedesmus/metabolismo , Titânio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Benzenossulfonatos/farmacologia , Disponibilidade Biológica , Água Doce , Scenedesmus/efeitos dos fármacos
2.
J Ethnopharmacol ; 326: 117901, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38341112

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Wuji Wan (WJW) is a traditional Chinese medicine formula that can be found in the "Prescriptions of Taiping Benevolent Dispensary" that has been employed in treating gastric discomfort, burning epigastric pain, and gastric reflux for hundreds of years and has shown promise for treating gastric ulcers (GUs). However, the active components and mechanism of action against GUs remain unclear. AIM OF THE STUDY: The aim of this study was to explore the active components of WJW and elucidate the underlying mechanism involved in treating GUs. MATERIALS AND METHODS: Initially, cell viability was measured by a cell counting kit 8 (CCK-8) assay to evaluate the efficacy of WJW-containing serum in vitro. The gastric ulcer index, ulcer inhibition rate, hematoxylin and staining (H&E), and periodic acid-Schiff (PAS) staining were used to evaluate the therapeutic effect of WJW in vivo. Subsequently, the levels of inflammatory factors and oxidative stress factors were determined using an enzyme-linked immunosorbent assays (ELISA) on in vitro and in vivo samples. Additionally, UPLC-Q Exactive Plus Orbitrap HRMS was used to analyze the components that were absorbed into the blood of WJW and its metabolites. Network pharmacology and metabolomics were subsequently used to identify the targets and pathways. Real-time quantitative PCR (RT‒qPCR) and Western blotting were used to verify the mRNA and protein levels of the key targets and pathways. Finally, the active components were identified by molecular docking to verify the binding stability of the components and key targets. RESULTS: WJW-containing serum ameliorated ethanol-induced damage in GES-1 cells and promoted cell healing. WJW-containing serum reduced IL-6, TNF-α, MDA, and LDH levels while increasing IL-10, SOD, and T-AOC levels in the cells. Moreover, WJW treatment resulted in decreased IL-6, TNF-α, and MDA levels and increased IL-10, SOD, PGE2, and NO levels in GUs rats. In addition, eight components of WJW were absorbed into the blood. The network pharmacology results revealed 192 common targets for blood entry components and GUs, and KEGG analysis revealed that apoptosis signaling pathways were the main pathways involved in WJW activity against GUs. Metabolomic screening was used to identify 13 differential metabolites. There were 23 common targets for blood entry components, GUs, and differential metabolites, with the key targets TNF (TNF-α), AKT1, PTGS2 (COX2) and MAPK1. WJW significantly inhibited the expression of Bax, Caspase-9, Caspase-3, cleaved Caspase-9, cleaved Caspase-3, TNF-α, COX2, and p-p44/42 MAPK while promoting the expression of Bcl-2 and p-AKT1. Molecular docking revealed that the active components of WJW for the treatment of GUs are berberine, palmatine, coptisine, evodiamine, rutaecarpine, evocarpine, and paeoniflorin. CONCLUSIONS: WJW treatment reduces inflammation and oxidative stress injury and inhibits apoptosis signaling pathways. The main active components are berberine, palmatine, coptisine, evodiamine, rutaecarpine, evocarpine, and paeoniflorin. In this paper, we provide a new strategy for exploring the active components of traditional Chinese medicine formulas for the treatment of diseases based on target mechanisms.


Assuntos
Berberina , Medicamentos de Ervas Chinesas , Glucosídeos , Monoterpenos , Úlcera Gástrica , Animais , Ratos , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Caspase 3 , Caspase 9 , Interleucina-10 , Ciclo-Oxigenase 2 , Interleucina-6 , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fator de Necrose Tumoral alfa , Superóxido Dismutase , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
3.
Environ Sci Pollut Res Int ; 22(16): 12407-14, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25903177

RESUMO

Nano-TiO2 is a widely applied nanoparticle (NPs) and co-exists with other pollutants such as heavy metals in aquatic environments. However, minimal knowledge is available concerning the ecological risk of these mixtures. Our study reported that at no toxic effect concentrations of TiO2 nanoparticles (5 mg/L), the toxicity of Cu ions to the algae Microcystis aeruginosa was significantly attenuated by TiO2 nanoparticles. Specifically, the concentration of photosynthetic pigments (i.e., concentration of Chla) increased 37% when comparing only Cu ions treated and the nano-TiO2-Cu co-incubation. The levels of phycocyanin (PC), allophycocyanin (APC), phycoerythrin (PE), and phycobiliprotein (PBPs) were also recovered at levels ranging from 23 to 35% after 72 h. For oxidative indexes, the decreased activities of the superoxide dismutase (SOD), peroxidase (POD) content, and malondialdehyde (MDA) with the existence of nano-TiO2 displayed a lower level compared to Cu ions treatment only at 24 and 48 h. This toxicity attenuation can be confirmed by subcellular structures because the impairment to cellular membranes and organelles reduced with the presence of nano-TiO2. The potential mechanisms of the antagonism between the nano-TiO2 and Cu ions can be partially attributed to the sorption of copper onto TiO2 nanoparticles, which fitted the Freundlich isotherm (coefficient = 0.967). The decreased bioavailability of Cu ions protected algae cells from being attacked by free Cu ions. Given the abundance of released nanoparticles and unique physicochemical property of nanoparticles, our results elucidated the ecosafety of nanoparticles and co-substrates in aquatic systems.


Assuntos
Cobre/farmacocinética , Cobre/toxicidade , Microcystis/efeitos dos fármacos , Titânio/química , Adsorção , Disponibilidade Biológica , Malondialdeído/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/química , Peroxidase/metabolismo , Pigmentos Biológicos/análise , Superóxido Dismutase/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa