Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Basic Res Cardiol ; 117(1): 5, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35499658

RESUMO

Dilated cardiomyopathy (DCM) is a major risk factor for heart failure and is associated with the development of life-threatening cardiac arrhythmias. Using a patient-specific induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model harbouring a mutation in cardiac troponin T (R173W), we aim to examine the cellular basis of arrhythmogenesis in DCM patients with this mutation. iPSC from control (Ctrl) and DCM-TnT-R173W donors from the same family were differentiated into iPSC-CM and analysed through optical action potential (AP) recordings, simultaneous measurement of cytosolic calcium concentration ([Ca2+]i) and membrane currents and separately assayed using field stimulation to detect the threshold for AP- and [Ca2+]i-alternans development. AP duration was unaltered in TnT-R173W iPSC-CM. Nevertheless, TnT-R173W iPSC-CM showed a strikingly low stimulation threshold for AP- and [Ca2+]i-alternans. Myofilaments are known to play a role as intracellular Ca2+ buffers and here we show increased Ca2+ affinity of intracellular buffers in TnT-R173W cells, indicating increased myofilament sensitivity to Ca2+. Similarly, EMD57033, a myofilament Ca2+ sensitiser, replicated the abnormal [Ca2+]i dynamics observed in TnT-R173W samples and lowered the threshold for alternans development. In contrast, application of a Ca2+ desensitiser (blebbistatin) to TnT-R173W iPSC-CM was able to phenotypically rescue Ca2+ dynamics, normalising Ca2+ transient profile and minimising the occurrence of Ca2+ alternans at physiological frequencies. This finding suggests that increased Ca2+ buffering likely plays a major arrhythmogenic role in patients with DCM, specifically in those with mutations in cardiac troponin T. In addition, we propose that modulation of myofilament Ca2+ sensitivity could be an effective anti-arrhythmic target for pharmacological management of this disease.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Arritmias Cardíacas/genética , Cálcio , Cardiomiopatia Dilatada/genética , Humanos , Miócitos Cardíacos , Troponina T/genética , Troponina T/farmacologia
2.
Magn Reson Med ; 72(4): 1039-48, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24243541

RESUMO

PURPOSE: In real-time MRI serial images are generally reconstructed from highly undersampled datasets as the iterative solutions of an inverse problem. While practical realizations based on regularized nonlinear inversion (NLINV) have hitherto been surprisingly successful, strong assumptions about the continuity of image features may affect the temporal fidelity of the estimated reconstructions. THEORY AND METHODS: The proposed method for real-time image reconstruction integrates the deformations between nearby frames into the data consistency term of the inverse problem. The aggregated motion estimation (AME) is not required to be affine or rigid and does not need additional measurements. Moreover, it handles multi-channel MRI data by simultaneously determining the image and its coil sensitivity profiles in a nonlinear formulation which also adapts to non-Cartesian (e.g., radial) sampling schemes. The new method was evaluated for real-time MRI studies using highly undersampled radial gradient-echo sequences. RESULTS: AME reconstructions for a motion phantom with controlled speed as well as for measurements of human heart and tongue movements demonstrate improved temporal fidelity and reduced residual undersampling artifacts when compared with NLINV reconstructions without motion estimation. CONCLUSION: Nonlinear inverse reconstructions with aggregated motion estimation offer improved image quality and temporal acuity for visualizing rapid dynamic processes by real-time MRI.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Sistemas Computacionais , Humanos , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Commun Biol ; 7(1): 1139, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271907

RESUMO

With recent advances in multi-color super-resolution light microscopy, it is possible to simultaneously visualize multiple subunits within biological structures at nanometer resolution. To optimally evaluate and interpret spatial proximity of stainings on such an image, colocalization analysis tools have to be able to integrate prior knowledge on the local geometry of the recorded biological complex. We present MultiMatch to analyze the abundance and location of chain-like particle arrangements in multi-color microscopy based on multi-marginal optimal unbalanced transport methodology. Our object-based colocalization model statistically addresses the effect of incomplete labeling efficiencies enabling inference on existent, but not fully observable particle chains. We showcase that MultiMatch is able to consistently recover existing chain structures in three-color STED images of DNA origami nanorulers and outperforms geometry-uninformed triplet colocalization methods in this task. MultiMatch generalizes to an arbitrary number of color channels and is provided as a user-friendly Python package comprising colocalization visualizations.


Assuntos
Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Cor , Algoritmos , DNA/química , DNA/metabolismo , Microscopia/métodos , Software
4.
Nat Comput Sci ; 1(4): 262-271, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217170

RESUMO

Because haplotype information is of widespread interest in biomedical applications, effort has been put into their reconstruction. Here, we propose an efficient method, called haploSep, that is able to accurately infer major haplotypes and their frequencies just from multiple samples of allele frequency data. Even the accuracy of experimentally obtained allele frequencies can be improved by re-estimating them from our reconstructed haplotypes. From a methodological point of view, we model our problem as a multivariate regression problem where both the design matrix and the coefficient matrix are unknown. Compared to other methods, haploSep is very fast, with linear computational complexity in the haplotype length. We illustrate our method on simulated and real data focusing on experimental evolution and microbial data.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa