Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 168(1-2): 121-134.e12, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086085

RESUMO

C2c2, the effector of type VI CRISPR-Cas systems, has two RNase activities-one for cutting its RNA target and the other for processing the CRISPR RNA (crRNA). Here, we report the structures of Leptotrichia shahii C2c2 in its crRNA-free and crRNA-bound states. While C2c2 has a bilobed structure reminiscent of all other Class 2 effectors, it also exhibits different structural characteristics. It contains the REC lobe with a Helical-1 domain and the NUC lobe with two HEPN domains. The two RNase catalytic pockets responsible for cleaving pre-crRNA and target RNA are independently located on Helical-1 and HEPN domains, respectively. crRNA binding induces significant conformational changes that are likely to stabilize crRNA binding and facilitate target RNA recognition. These structures provide important insights into the molecular mechanism of dual RNase activities of C2c2 and establish a framework for its future engineering as a RNA editing tool.


Assuntos
Sistemas CRISPR-Cas , Leptotrichia/química , Leptotrichia/enzimologia , Ribonucleases/química , Sequência de Aminoácidos , Domínio Catalítico , Leptotrichia/classificação , Leptotrichia/metabolismo , Modelos Moleculares , Mutagênese , Processamento Pós-Transcricional do RNA , RNA Bacteriano/química , RNA não Traduzido/química , Alinhamento de Sequência
2.
Cell ; 163(4): 840-53, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26478180

RESUMO

Bacteria acquire memory of viral invaders by incorporating invasive DNA sequence elements into the host CRISPR locus, generating a new spacer within the CRISPR array. We report on the structures of Cas1-Cas2-dual-forked DNA complexes in an effort toward understanding how the protospacer is sampled prior to insertion into the CRISPR locus. Our study reveals a protospacer DNA comprising a 23-bp duplex bracketed by tyrosine residues, together with anchored flanking 3' overhang segments. The PAM-complementary sequence in the 3' overhang is recognized by the Cas1a catalytic subunits in a base-specific manner, and subsequent cleavage at positions 5 nt from the duplex boundary generates a 33-nt DNA intermediate that is incorporated into the CRISPR array via a cut-and-paste mechanism. Upon protospacer binding, Cas1-Cas2 undergoes a significant conformational change, generating a flat surface conducive to proper protospacer recognition. Here, our study provides important structure-based mechanistic insights into PAM-dependent spacer acquisition.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sequência de Aminoácidos , Proteínas Associadas a CRISPR/química , Cristalografia por Raios X , Endodesoxirribonucleases/química , Escherichia coli/genética , Escherichia coli/imunologia , Proteínas de Escherichia coli/química , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
3.
Nature ; 613(7943): 391-397, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599985

RESUMO

Chemical modifications of RNA have key roles in many biological processes1-3. N7-methylguanosine (m7G) is required for integrity and stability of a large subset of tRNAs4-7. The methyltransferase 1-WD repeat-containing protein 4 (METTL1-WDR4) complex is the methyltransferase that modifies G46 in the variable loop of certain tRNAs, and its dysregulation drives tumorigenesis in numerous cancer types8-14. Mutations in WDR4 cause human developmental phenotypes including microcephaly15-17. How METTL1-WDR4 modifies tRNA substrates and is regulated remains elusive18. Here we show,  through structural, biochemical and cellular studies of human METTL1-WDR4, that WDR4 serves as a scaffold for METTL1 and the tRNA T-arm. Upon tRNA binding, the αC region of METTL1 transforms into a helix, which together with the α6 helix secures both ends of the tRNA variable loop. Unexpectedly, we find that the predicted disordered N-terminal region of METTL1 is part of the catalytic pocket and essential for methyltransferase activity. Furthermore, we reveal that S27 phosphorylation in the METTL1 N-terminal region inhibits methyltransferase activity by locally disrupting the catalytic centre. Our results provide a molecular understanding of tRNA substrate recognition and phosphorylation-mediated regulation of METTL1-WDR4, and reveal the presumed disordered N-terminal region of METTL1 as a nexus of methyltransferase activity.


Assuntos
Proteínas de Ligação ao GTP , Metiltransferases , Processamento Pós-Transcricional do RNA , RNA de Transferência , Humanos , Biocatálise , Domínio Catalítico , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Metiltransferases/antagonistas & inibidores , Metiltransferases/química , Metiltransferases/metabolismo , Fosforilação , RNA de Transferência/química , RNA de Transferência/metabolismo , Especificidade por Substrato
4.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 437-443, 2024 May 15.
Artigo em Chinês | MEDLINE | ID: mdl-38802901

RESUMO

The UK screening and treatment of retinopathy of prematurity (ROP) updated 2022 guidelines were developed by a multidisciplinary guideline development group from the Royal College of Paediatrics and Child Health and the Royal College of Ophthalmologists, following the standards of the National Institute for Health and Care Excellence. They were published on the websites of the Royal College of Paediatrics and Child Health and the Royal College of Ophthalmologists in March 2022, and formally published in Early Human Development in March 2023. The guidelines provide evidence-based recommendations for the screening and treatment of ROP. The most significant change in the 2022 updated version compared to the previous guidelines is the lowering of the gestational age screening criterion to below 31 weeks. The treatment section covers treatment indications, timing, methods, and follow-up visits of ROP. This article interprets the guidelines and compares them with ROP guidelines/consensus in China, providing a reference for domestic peers.


Assuntos
Guias de Prática Clínica como Assunto , Retinopatia da Prematuridade , Humanos , Retinopatia da Prematuridade/diagnóstico , Retinopatia da Prematuridade/terapia , Recém-Nascido , Reino Unido , Triagem Neonatal , Idade Gestacional
5.
Microsc Microanal ; 27(1): 36-43, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33455617

RESUMO

The microstructure and texture evolution of Ni-5 at%W (Ni5W) alloy substrates were investigated by in situ tensile testing along the rolling direction (RD), transverse direction (TD), and at 45° to the RD (45°-RD), as well as by electron backscatter diffraction characterization. The tensile stress direction had a significant influence on the texture evolution. The cubic texture in the Ni-5 at%W alloy exhibited severe degradation when the tensile angle was 45°-RD. In contrast, the cubic texture was relatively stable under high deformation along the RD or TD. It was found that the slip line system in the 45°-RD specimen was the key to the contrasting behavior. The effect of the tensile testing angle on the cubic texture evolution for Ni­W substrates was investigated, and the corresponding effect on the superconducting properties of coated materials was studied.

6.
Microsc Microanal ; 26(3): 365-372, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32321618

RESUMO

Advanced Ni8W/Ni12W/Ni8W alloy composite substrates used in YBCO-coated conductors with a strong cube texture and high yield strength have been fabricated, and a CeO2 buffer layer film was successfully deposited on the composite substrates. Through in situ tensile testing coupled with electron backscattered diffraction (EBSD) analysis, the stability of the cube texture of Ni8W/Ni12W/Ni8W alloy composite substrates has been investigated. The stress-strain curve shows that the yield strength (at 0.2% strain) of the composite substrates exceeds 250 Mpa. The orientation of grains and boundaries on the surface of the substrates was almost unchanged, while the strain exceeds 0.2%, which indicated that the composite substrates are adequate for depositing buffer layers and YBCO layers by the reel-to-reel process.

7.
J Exp Bot ; 67(8): 2439-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26936828

RESUMO

CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature-high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63(pCabZIP63) and CaWRKY40(pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven ß-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper's response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper's response to RSI and HTHH.


Assuntos
Capsicum/microbiologia , Retroalimentação Fisiológica , Temperatura Alta , Umidade , Proteínas de Plantas/metabolismo , Ralstonia solanacearum/fisiologia , Ácido Abscísico/farmacologia , Acetatos/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Sequência de Bases , Biomarcadores/metabolismo , Capsicum/efeitos dos fármacos , Capsicum/genética , Capsicum/imunologia , Morte Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Clonagem Molecular , Ciclopentanos/farmacologia , Etilenos/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Genes de Plantas , Oxilipinas/farmacologia , Imunidade Vegetal/efeitos dos fármacos , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Análise de Sequência de Proteína , Transcrição Gênica/efeitos dos fármacos
8.
Cancer Sci ; 106(6): 700-708, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25783790

RESUMO

MicroRNAs play pivotal roles in cancer stem cell regulation. Previous studies have shown that microRNA-34a (miR-34a) is downregulated in human breast cancer. However, it is unknown whether and how miR-34a regulates breast cancer stem cells. Notch signaling is one of the most important pathways in stem cell maintenance and function. In this study, we verified that miR-34a directly and functionally targeted Notch1 in MCF-7 cells. We reported that miR-34a negatively regulated cell proliferation, migration, and invasion and breast cancer stem cell propagation by downregulating Notch1. The expression of miR-34a was negatively correlated with tumor stages, metastasis, and Notch1 expression in breast cancer tissues. Furthermore, overexpression of miR-34a increased chemosensitivity of breast cancer cells to paclitaxel (PTX) by downregulating the Notch1 pathway. Mammosphere formation and expression of the stemness factor ALDH1 were also reduced in the cells treated with miR-34a and PTX compared to those treated with PTX alone. Taken together, our results indicate that miR-34a inhibited breast cancer stemness and increased the chemosensitivity to PTX partially by downregulating the Notch1 pathway, suggesting that miR-34a/Notch1 play an important role in regulating breast cancer stem cells. Thus miR-34a is a potential target for prevention and therapy of breast cancer.


Assuntos
Neoplasias da Mama/patologia , MicroRNAs/fisiologia , Células-Tronco Neoplásicas/fisiologia , Receptor Notch1/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Movimento Celular , Proliferação de Células , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Humanos , Células MCF-7 , Invasividade Neoplásica , Estadiamento de Neoplasias , Paclitaxel/uso terapêutico , Receptor Notch1/fisiologia , Transdução de Sinais
9.
Zhonghua Zhong Liu Za Zhi ; 36(10): 739-45, 2014 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-25567303

RESUMO

OBJECTIVE: To investigate the effect of microRNA-140 (miR-140) on the migration and invasion of colorectal cancer (CRC) cells and the possible mechanism. METHODS: miR-140 mimics, miR-140 specific inhibitor or small interfering RNA (siRNA) against Smad3 were transfected into human CRC cell line RKO cells respectively, using Oligofectamine or Lipofectamine2000. Quantitative real-time PCR (real-time PCR) was used to measure the expression levels of miR-140 and Smad3 mRNA. Smad3 protein was analyzed by Western blot. The in vitro cell migrating and invasive abilities were determined by wound-healing and Transwell chamber assay after up-regulating or down-regulating miR-140 or knocking down Smad3. RESULTS: The Western blot assays showed that the Smad3 protein level was significantly reduced after up-regulating miR-140 (0.04 ± 0.01), compared with that of (0.47 ± 0.02, P < 0.05) in the control group and that of (0.52 ± 0.06) in the negative control group (P < 0.05 for both). The results of real-time PCR indicated that no significant difference was found in the levels of Smad3 mRNA between miR-140 transfection and NC groups (1.11 ± 0.13 vs. 1.00 ± 0.06, P > 0.05). The wound-healing assay showed that the migrating ability was dramatically attenuated by miR-140 compared with that in the control and NC groups, whereas no significance was found when compared with that of the Smad3 siRNA transfected cells. The number of cells migrating through Transwell chamber without matrigel in the miR-140 group was (76.2 ± 4.4), remarkably lowered than that in the control (267.1 ± 4.9) and NC (336.1 ± 5.7) groups (P < 0.05 for both), but no significant difference between the miR-140 (76.2 ± 4.4) and Smad3 siRNA (83.5 ± 7.3) groups. Transwell chamber with matrigel assay showed that number of cells penetrating through the membrane was (109.5 ± 7.4) in the miR-140 group, significantly lower than that in the control (403.1 ± 5.1) and NC (392.6 ± 8.4) groups (P < 0.05 for both), while Smad3 siRNA transfection had a similar effect (138.8 ± 3.6)(P > 0.05). Down-regulation of miR-140 increased the level of smad3 protein expression, and partially reversed the inhibition of the cell migration and invasion mediated by miR-140. Co-transfection of miR-140 inhibitor and Smad3 siRNA had no significant effect on the Smad3 protein expression and the abilities of cell migration and invasion. CONCLUSIONS: miR-140 regulates the Smad3 expression at the post-transcriptional level. miR-140 suppresses the migrating and invasive abilities of CRC cells, possibly through down-regulation of Smad3. The findings of this study suggest that miR-140 may have a unique potential as a possible biomarker candidate for diagnosis and therapy of tumor metastasis.


Assuntos
Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs , Proteína Smad3/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Humanos , Invasividade Neoplásica , RNA Mensageiro , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Proteína Smad3/genética , Transfecção , Regulação para Cima
10.
Phys Rev E ; 109(3-2): 035303, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632759

RESUMO

Real-world water wave fields exhibit significant nonlinear and nonisospectral characteristics, making it challenging to predict their evolution by relying solely on numerical simulation or exact solutions using integrable system theory. Hence, this paper introduces a fast and adaptive method of modal identification and prediction in nonisospectral water wave fields using the reduced-order nonlinear solution (RONS) scheme. Specifically, we discuss the coarse graining and mode extraction of wave field snapshots from the data-driven and physics-driven perspectives and utilize the RONS method for principle modal prediction of nonisospectral water wave fields. This is achieved by investigating the standard and nonisospectral Gardner system describing nonlinear water waves as a demonstration. Through detailed comparison and analysis, the fundamental solitary behaviors and dispersive effects in the Gardner system are discussed. Subsequently, a neighbor approximation is developed that combines the essences of symbolic precomputation and numerical computation in the RONS procedure, which exploits the locality of nonlinear interactions in water wave fields.

11.
Open Med (Wars) ; 19(1): 20240980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911255

RESUMO

Objective: This study aimed to evaluate the efficacy and safety of solid organ transplantation recipients inoculated with an inactivated COVID-19 vaccine. Methods: We retrospectively analyzed the antibody levels and related adverse events of non-transplantation subjects and solid organ transplant recipients, both pre-transplantation (individuals awaiting organ transplantation) and post-transplantation (individuals who have undergone organ transplantation), who received inactivated COVID-19 vaccines from February 2021 to July 2022. Results: The study included 38 pre-transplantation vaccination group, 129 post-transplantation vaccination group, and 246 non-transplantation group. The antibody titer was assessed monthly within the period of 1-12 months after the last injection. The antibody-positive rate among the three groups were 36.84, 20.30, 61.17% (P < 0.05). The antibody-positive rates among three groups with one, two doses vaccine were not significantly different (P > 0.05), but were significantly different after three doses (P < 0.05). The antibody titers among three groups were significantly different after two doses (P < 0.05). Adverse reactions occurred in six transplant recipients, which were relieved after treatment, and not in the non-transplantation subjects. Conclusion: Inactivated COVID-19 vaccine is safe and effective for solid organ transplantation recipients, at least two doses of which should be completed before organ transplant surgery.

12.
Microsyst Nanoeng ; 10: 54, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654844

RESUMO

In implantable electrophysiological recording systems, the headstage typically comprises neural probes that interface with brain tissue and integrated circuit chips for signal processing. While advancements in MEMS and CMOS technology have significantly improved these components, their interconnection still relies on conventional printed circuit boards and sophisticated adapters. This conventional approach adds considerable weight and volume to the package, especially for high channel count systems. To address this issue, we developed a through-polymer via (TPV) method inspired by the through-silicon via (TSV) technique in advanced three-dimensional packaging. This innovation enables the vertical integration of flexible probes, amplifier chips, and PCBs, realizing a flexible, lightweight, and integrated device (FLID). The total weight of the FLIDis only 25% that of its conventional counterparts relying on adapters, which significantly increased the activity levels of animals wearing the FLIDs to nearly match the levels of control animals without implants. Furthermore, by incorporating a platinum-iridium alloy as the top layer material for electrical contact, the FLID realizes exceptional electrical performance, enabling in vivo measurements of both local field potentials and individual neuron action potentials. These findings showcase the potential of FLIDs in scaling up implantable neural recording systems and mark a significant advancement in the field of neurotechnology.

13.
J Orofac Orthop ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962639

RESUMO

PURPOSE: Total mandibular arch mesialization using mini-implants is challenging due to anatomic limitations. The aim of this study was to introduce a mini-implant-supported device for total mesialization of the mandibular dentition and to analyze the biomechanical properties of the device. METHODS: Finite element models were constructed to explore the effect of friction and force direction on the force transmission efficiency of the device. In addition, the three-dimensional displacement of each tooth was evaluated with two force application points (2 or 8 mm hooks) under three force conditions (symmetric: 150 g of force on both sides, or asymmetric: 100 and 200 g of force on each side). RESULTS: The force transmission efficiency was 66.7% under a friction coefficient of 0.15 and parallel pushing and pulling forces. The force transmission efficiency was 65.90 and 66.63% when the pushing force was 15° away from the pulling force on the sagittal and horizontal planes, respectively. The mandibular dentition moved mesially with a greater tendency for incisor labial crown tipping, mesial molar rotation and buccal second molar crown tipping when using the 8 mm hook compared to that when using the 2 mm hook. Rigid archwires resulted in more consistent tooth mesialization than stainless steel archwires. Asymmetric forces resulted in asymmetric dental arch mesialization. CONCLUSION: The forces transmitted by the presented mini-implant-supported device varied depending on the friction level and force direction. The device should be able to achieve symmetric or asymmetric total mesialization of the mandibular dentition.

14.
JHEP Rep ; 5(11): 100856, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37791375

RESUMO

Background & Aims: Circadian rhythms play significant roles in immune responses, and many inflammatory processes in liver diseases are associated with malfunctioning molecular clocks. However, the significance of the circadian clock in autoimmune hepatitis (AIH), which is characterised by immune-mediated hepatocyte destruction and extensive inflammatory cytokine production, remains unclear. Methods: We tested the difference in susceptibility to the immune-mediated liver injury induced by concanavalin A (ConA) at various time points throughout a day in mice and analysed the effects of global, hepatocyte, or myeloid cell deletion of the core clock gene, Bmal1 (basic helix-loop-helix ARNT-like 1), on liver injury and inflammatory responses. Multiple molecular biology techniques and mice with macrophage-specific knockdown of Junb, a Bmal1 target gene, were used to investigate the involvement of Junb in the circadian control of ConA-induced hepatitis. Results: The susceptibility to ConA-induced liver injury is highly dependent on the timing of ConA injection. The treatment at Zeitgeber time 0 (lights on) triggers the highest mortality as well as the severest liver injury and inflammatory responses. Further study revealed that this timing effect was driven by macrophage, but not hepatocyte, Bmal1. Mechanistically, Bmal1 controls the diurnal variation of ConA-induced hepatitis by directly regulating the circadian transcription of Junb and promoting M1 macrophage activation. Inhibition of Junb in macrophages blunts the administration time-dependent effect of ConA and attenuates liver injury. Moreover, we demonstrated that Junb promotes macrophage inflammation by regulating AKT and extracellular signal-regulated kinase (ERK) signalling pathways. Conclusions: Our findings uncover a critical role of the Bmal1-Junb-AKT/ERK axis in the circadian control of ConA-induced hepatitis and provide new insights into the prevention and treatment of AIH. Impact and Implications: This study unveils a critical role of the Bmal1-Junb-AKT/ERK axis in the circadian control of ConA-induced liver injury, providing new insights into the prevention and treatment of immune-mediated hepatitis, including autoimmune hepatitis (AIH). The findings have scientific implications as they enhance our understanding of the circadian regulation of immune responses in liver diseases. Furthermore, clinically, this research offers opportunities for optimising treatment strategies in immune-mediated hepatitis by considering the timing of therapeutic interventions.

15.
Nutrients ; 14(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893879

RESUMO

Nowadays, more and more people are suffering from circadian disruption. However, there is no well-accepted treatment. Recently, time-restricted feeding (TRF) was proposed as a potential non-drug intervention to alleviate jet lag in mice, especially in mice treated with a 6-h advanced phase shift. Here, we challenged C57BL/6 mice with a 6-h delay phase shift or a 12-h shift (day-night reversal) combined with 6- or 12-h TRF within the dark phase and found the beneficial effects of given TRF strategies in certain phase-shifting situations. Although behavioral fitness did not correlate well with health status, none of the TRF strategies we used deteriorated lipopolysaccharide-induced sepsis. These findings improve our understanding of the benefits of TRF for adaptation to circadian disruption.


Assuntos
Ritmo Circadiano , Síndrome do Jet Lag , Adaptação Fisiológica , Animais , Jejum , Humanos , Camundongos , Camundongos Endogâmicos C57BL
16.
17.
Exp Ther Med ; 22(3): 1021, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34373707

RESUMO

As the major cause of irreversible loss of vision in adults, diabetic retinopathy (DR) is one of the most serious complications of diabetes. The imbalance of the retinal microenvironment and destruction of the blood-retinal barrier have a significant role in the progression of DR. Inward rectifying potassium channel 4.1 (Kir4.1) is located on Müller cells and is closely related to potassium homeostasis, water balance and glutamate clearance in the whole retina. The present review discusses the functions of Kir4.1 in regulating the retinal microenvironment and related biological mechanisms in DR. In the future, Kir4.1 may represent a novel alternative therapeutic target for DR through affecting the retinal microenvironment.

18.
Sci China Life Sci ; 63(4): 516-528, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31792780

RESUMO

Cas1 is a key component of the CRISPR adaptation complex, which captures and integrates foreign DNA into the CRISPR array, resulting in the generation of new spacers. We have determined crystal structures of Thermus thermophilus Cas1 involved in new spacer acquisition both in complex with branched DNA and in the free state. Cas1 forms an asymmetric dimer without DNA. Conversely, two asymmetrical dimers bound to two branched DNAs result in the formation of a DNA-mediated tetramer, dimer of structurally asymmetrical dimers, in which the two subunits markedly present different conformations. In the DNA binding complex, the N-terminal domain adopts different orientations with respect to the C-terminal domain in the two monomers that form the dimer. Substrate binding triggers a conformational change in the loop 164-177 segment. This loop is also involved in the 3' fork arm and 5' fork arm strand recognition in monomer A and B, respectively. This study provides important insights into the molecular mechanism of new spacer adaptation.


Assuntos
Proteínas Associadas a CRISPR/química , DNA/química , Sequência de Aminoácidos , Sítios de Ligação , Sistemas CRISPR-Cas , Cristalização , DNA/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Thermus thermophilus/química , Thermus thermophilus/genética
19.
J Healthc Eng ; 2018: 1797502, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581546

RESUMO

Cephalometric analysis is a standard tool for assessment and prediction of craniofacial growth, orthodontic diagnosis, and oral-maxillofacial treatment planning. The aim of this study is to develop a fully automatic system of cephalometric analysis, including cephalometric landmark detection and cephalometric measurement in lateral cephalograms for malformation classification and assessment of dental growth and soft tissue profile. First, a novel method of multiscale decision tree regression voting using SIFT-based patch features is proposed for automatic landmark detection in lateral cephalometric radiographs. Then, some clinical measurements are calculated by using the detected landmark positions. Finally, two databases are tested in this study: one is the benchmark database of 300 lateral cephalograms from 2015 ISBI Challenge, and the other is our own database of 165 lateral cephalograms. Experimental results show that the performance of our proposed method is satisfactory for landmark detection and measurement analysis in lateral cephalograms.


Assuntos
Cefalometria/métodos , Árvores de Decisões , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Adolescente , Adulto , Criança , Diagnóstico Bucal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiografia Dentária , Análise de Regressão , Adulto Jovem
20.
Oncol Lett ; 15(5): 7948-7954, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29725482

RESUMO

Metformin (Met) is a therapeutic agent for the treatment of type 2 diabetes mellitus. There is evidence that Met may reduce the risk of cancer in patients with type 2 diabetes mellitus by inhibiting tumor cell growth, prolonging the overall survival time in patients with various types of malignancy. However, the function and mechanism of Met have not been fully elucidated in osteosarcoma (OS). The present study evaluated the anti-proliferative effect of Met on MG63 and U2OS OS cells, identifying that it acted in a dose- and time-dependent manner. Met also inhibited OS cell migration and invasion, potentially by regulating the epithelial-mesenchymal transition in OS cells. Mechanistically, Met was demonstrated to partly exert these functions through the suppression of Akt phosphorylation, which was associated with increased phosphatase and tensin (PTEN) expression. Silencing PTEN prevented the Met-induced inhibition of the growth and metastasis of OS cells. As Met has anti-proliferative and anti-metastatic effects on OS cells it is a potential candidate, in combination with other chemotherapeutic agents, for use in the treatment of OS.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa