RESUMO
BACKGROUND: Response to immunotherapy is the main challenge of head and neck squamous cancer (HNSCC) treatment. Previous studies have indicated that tumor mutational burden (TMB) is associated with prognosis, but it is not always a precise index. Hence, investigating specific genetic mutations and tumor microenvironment (TME) changes in TMB-high patients is essential for precision therapy of HNSCC. METHODS: A total of 33 HNSCC patients were enrolled in this study. We calculated the TMB score based on next-generation sequencing (NGS) sequencing and grouped these patients based on TMB score. Then, we examined the immune microenvironment of HNSCC using assessments of the bulk transcriptome and the single-cell RNA sequence (scRNA-seq) focusing on the molecular nature of TMB and mutations in HNSCC from our cohort. The association of the mutation pattern and TMB was analyzed in The Cancer Genome Atlas (TCGA) and validated by our cohort. RESULTS: 33 HNSCC patients were divided into three groups (TMB-low, -medium, and -high) based on TMB score. In the result of 520-gene panel sequencing data, we found that FAT1 and LRP1B mutations were highly prevalent in TMB-high patients. FAT1 mutations are associated with resistance to immunotherapy in HNSCC patients. This involves many metabolism-related pathways like RERE, AIRE, HOMER1, etc. In the scRNA-seq data, regulatory T cells (Tregs), monocytes, and DCs were found mainly enriched in TMB-high samples. CONCLUSION: Our analysis unraveled the FAT1 gene as an assistant predictor when we use TMB as a biomarker of drug resistance in HNSCC. Tregs, monocytes, and dendritic cells (DCs) were found mainly enriched in TMB-high samples.
Assuntos
Neoplasias de Cabeça e Pescoço , Imunoterapia , Mutação , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Imunoterapia/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Idoso , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Prognóstico , Proteínas de Membrana/genética , CaderinasRESUMO
Based on the forefront of clinical research, there is a growing recognition that the gut microbiota, which plays a pivotal role in shaping both the innate and adaptive immune systems, may significantly contribute to the pathogenesis of coronavirus disease 2019 (COVID-19). Although an association between altered gut microbiota and COVID-19 pathogenesis has been established, the causative mechanisms remain incompletely understood. Additionally, the validation of the precise functional alterations within the gut microbiota relevant to COVID-19 pathogenesis has been limited by a scarcity of suitable animal experimental models. In the present investigation, we employed a newly developed humanized ACE2 knock-in (hACE2-KI) mouse model, capable of recapitulating critical aspects of pulmonary and intestinal infection, to explore the modifications in the gut microbiota following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Examination of fecal samples using 16S rRNA gene profiling unveiled a notable reduction in species richness and conspicuous alterations in microbiota composition at 6 days postinfection (dpi). These alterations were primarily characterized by a decline in beneficial bacterial species and an escalation in certain opportunistic pathogens. Moreover, our analysis entailed a correlation study between the gut microbiota and plasma cytokine concentrations, revealing the potential involvement of the Lachnospiraceae_NK4A136_group and unclassified_f_Lachnospiraceae genera in attenuating hyperinflammatory responses triggered by the infection. Furthermore, integration of gut microbiota data with RNA-seq analysis results suggested that the increased presence of Staphylococcus in fecal samples may signify the potential for bacterial coinfection in lung tissues via gut translocation. In summary, our hACE2-KI mouse model effectively recapitulated the observed alterations in the gut microbiota during SARS-CoV-2 infection. This model presents a valuable tool for elucidating gut microbiota-targeted strategies aimed at mitigating COVID-19.
Assuntos
COVID-19 , Microbioma Gastrointestinal , Animais , Camundongos , SARS-CoV-2 , RNA Ribossômico 16S/genética , Modelos Animais de DoençasRESUMO
BACKGROUND: Robotic gastrectomy (RG) has been widely used to treat gastric cancer. However, whether the short-term outcomes of robotic gastrectomy are superior to those of laparoscopic gastrectomy (LG) for elderly patients with advanced gastric cancer has not been reported. METHODS: The study enrolled of 594 elderly patients with advanced gastric cancer who underwent robotic or laparoscopic radical gastrectomy. The RG cohort was matched 1:3 with the LG cohort using propensity score-matching (PSM). RESULTS: After PSM, 121 patients were included in the robot group and 363 patients in the laparoscopic group. Excluding the docking and undocking times, the operation time of the two groups was similar (P = 0.617). The RG group had less intraoperative blood loss than the LG group (P < 0.001). The time to ambulation and first liquid food intake was significantly shorter in the RG group than in the LG group (P < 0.05). The incidence of postoperative complications did not differ significantly between the two groups (P = 0.14). Significantly more lymph nodes were dissected in the RG group than in the LG group (P = 0.001). Postoperative adjuvant chemotherapy was started earlier in the RG group than in the LG group (P = 0.02). CONCLUSIONS: For elderly patients with advanced gastric cancer, RG is safe and feasible. Compared with LG, RG is associated with less intraoperative blood loss; a faster postoperative recovery time, allowing a greater number of lymph nodes to be dissected; and earlier adjuvant chemotherapy.
Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Robótica , Neoplasias Gástricas , Humanos , Idoso , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/patologia , Pontuação de Propensão , Perda Sanguínea Cirúrgica , Resultado do Tratamento , Gastrectomia , Complicações Pós-Operatórias/cirurgia , Estudos RetrospectivosRESUMO
Climate change is predicted to cause milder winters and thus exacerbate soil freeze-thaw perturbations in the subarctic, recasting the environmental challenges that soil microorganisms need to endure. Historical exposure to environmental stressors can facilitate the microbial resilience to new cycles of that same stress. However, whether and how such microbial memory or stress legacy can modulate microbial responses to cycles of frost remains untested. Here, we conducted an in situ field experiment in a subarctic birch forest, where winter warming resulted in a substantial increase in the number and intensity of freeze-thaw events. After one season of winter warming, which raised mean surface and soil (-8 cm) temperatures by 2.9 and 1.4°C, respectively, we investigated whether the in situ warming-induced increase in frost cycles improved soil microbial resilience to an experimental freeze-thaw perturbation. We found that the resilience of microbial growth was enhanced in the winter warmed soil, which was associated with community differences across treatments. We also found that winter warming enhanced the resilience of bacteria more than fungi. In contrast, the respiration response to freeze-thaw was not affected by a legacy of winter warming. This translated into an enhanced microbial carbon-use efficiency in the winter warming treatments, which could promote the stabilization of soil carbon during such perturbations. Together, these findings highlight the importance of climate history in shaping current and future dynamics of soil microbial functioning to perturbations associated with climate change, with important implications for understanding the potential consequences on microbial-mediated biogeochemical cycles.
Assuntos
Resiliência Psicológica , Microbiologia do Solo , Estações do Ano , Solo/química , Carbono , Mudança ClimáticaRESUMO
Type 2 diabetic osteoporosis (T2DOP) is a skeletal metabolic syndrome characterized by impaired bone remodeling due to type 2 diabetes mellitus, and there are drawbacks in the present treatment. Osteoking (OK) is widely used for treating fractures and femoral head necrosis. However, OK is seldom reported in the field of T2DOP, and its role and mechanism of action need to be elucidated. Consequently, this study investigated whether OK improves bone remodeling and the mechanisms of diabetes-induced injury. We used db/db mice as a T2DOP model and stimulated MC3T3-E1 cells (osteoblast cell line) with high glucose (HG, 50 mM) and advanced glycation end products (AGEs, 100 µg/mL), respectively. The effect of OK on T2DOP was assessed using a combined 3-point mechanical bending test, hematoxylin and eosin staining, and enzyme-linked immunosorbent assay. The effect of OK on enhancing MC3T3-E1 cell differentiation and mineralization under HG and AGEs conditions was assessed by an alkaline phosphatase activity assay and alizarin red S staining. The AGEs/insulin-like growth factor-1(IGF-1)/ß-catenin/osteoprotegerin (OPG) pathway-associated protein levels were assayed by western blot analysis and immunohistochemical staining. We found that OK reduced hyperglycemia, attenuated bone damage, repaired bone remodeling, increased tibial and femoral IGF-1, ß-catenin, and OPG expression, and decreased receptor activator of nuclear kappa B ligand and receptor activator of nuclear kappa B expression in db/db mice. Moreover, OK promoted the differentiation and mineralization of MC3T3-E1 cells under HG and AGEs conditions, respectively, and regulated the levels of AGEs/IGF-1/ß-catenin/OPG pathway-associated proteins. In conclusion, our results suggest that OK may lower blood glucose, alleviate bone damage, and attenuate T2DOP, in part through activation of the AGEs/IGF-1/ß-catenin/OPG pathway.
Assuntos
Diabetes Mellitus Tipo 2 , Produtos Finais de Glicação Avançada , Osteogênese , Animais , Masculino , Camundongos , beta Catenina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoporose/metabolismo , Osteoprotegerina/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Fluorescence molecular tomography (FMT) is a non-invasive, radiation-free, and highly sensitive optical molecular imaging technique for early tumor detection. However, inadequate measurement information along with significant scattering of near-infrared light within the tissue leads to high ill-posedness in the inverse problem of FMT. To improve the quality and efficiency of FMT reconstruction, we build a reconstruction model based on log-sum regularization and introduce an online maximum a posteriori estimation (OPE) algorithm to solve the non-convex optimization problem. The OPE algorithm approximates a stationary point by evaluating the gradient of the objective function at each iteration, and its notable strength lies in the remarkable speed of convergence. The results of simulations and experiments demonstrate that the OPE algorithm ensures good reconstruction quality and exhibits outstanding performance in terms of reconstruction efficiency.
RESUMO
The development of nanomaterials for delivering natural compounds has emerged as a promising approach for atherosclerosis therapy. However, premature drug release remains a challenge. Here, we present a ROS-responsive biomimetic nanocomplex co-loaded with Geniposide (GP) and Emodin (EM) in nanoliposome particles (LP NPs) for targeted atherosclerosis therapy. The nanocomplex, hybridized with the macrophage membrane (Møm), effectively evades immune system clearance and targets atherosclerotic plaques. A modified thioketal (TK) system responds to ROS-rich plaque regions, triggering controlled drug release. In vitro, the nanocomplex inhibits endothelial cell apoptosis and macrophage lipid accumulation, restores endothelial cell function, and promotes cholesterol effluxion. In vivo, it targets ROS-rich atherosclerotic plaques, reducing plaque area ROS levels and restoring endothelial cell function, consequently promoting cholesterol outflow. Our study demonstrates that ROS-responsive biomimetic nanocomplexes co-delivering GP and EM exert a synergistic effect against endothelial cell apoptosis and lipid deposition in macrophages, offering a promising dual-cell therapy modality for atherosclerosis regression.
Assuntos
Aterosclerose , Emodina , Iridoides , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/tratamento farmacológico , Lipossomos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Emodina/farmacologia , Emodina/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , ColesterolRESUMO
Amorphophallus muelleri is an Araceae plant with perennial tuber, widely used in food, pharmaceutical and chemical industry due to its richness in glucomannan. In April 2022, an outbreak of a target spot on A. muelleri plantlets was observed in a nursery in Ruili, Yunnan, China. The leafstalks of the diseased plantlets in the nursery turned brown and decayed (Fig.1 A-B), then gradually some water-soaked spots on the true leaves developed along the veins (Fig.1 A). Subquencely, the spots on the true leaves turned dark green to white-grayish in the center, which formed light to dark brown concentric rings with a target-like appearance surrounded by a yellow halo (Fig.1 C). When the temperature was 20-34â and the relatively humidity was 25-80%, dark-green to black sporodochia with white hypha appeared on the lower and upper leaf surfaces. Finally, 5-8% of the plants surveyed on 800 m2 of one-year-old plantlets in the nursery showed the symptoms and some plants with infected leafstalks would be death. Similar symptoms were also observed on about 10% of the transplanted plants surveyed on 12000 m2 (1.2 ha) of two-year-old plantlets in the field. Five diseased leaves from five distinct plantlets in the nursery were collected for pathogen isolation. Leaf pieces(5 x 5 mm) were cut from the edge of necrotic lesions, and surface-sterilized with 2.5% sodium hypochlorite for 1 min, 75% ethanol for 30 s, then rinsed 5 times by sterilized distilled water, finally put the leaf pieces on sterilized filter paper for 3-5 minutes to dry them and transferred onto potato dextrose agar (PDA) in petri dishes at 25â for three days. Five pure cultures identical to colony and conidial characteristics were isolated from five individual plants. The representative pure culture (M1) was grayish-white and circular colonies were 7.50 cm in diamter after 15 days at 25â, with dark green concentric rings of sporodochia, the dorsal view of the colonies were yellowish. Conidia were aseptate, smooth, cylindrical, 5.00-6.25 (5.71) x 1.25-1.67 (1.63) µm (n = 20) rounded at both ends. A spore suspension (1 x 106 spores/ml) was prepared by harvesting spores from 15-day-old cultures grown in the dark at 25â, then a thirty-ml of spore suspension was sprayed on the healthy leaves of 10 two-year-old plantlets. Thirty-ml of sterile water was sprayed on the healthy leaves of another 10 seedlings and used as the control. All seedlings were placed in a nursery at 20 to 34â and a relative humidity of 25 to 80%. Similar symptoms (Fig.1 D-F) to those observed in the nursery and field developed on all the 10 seedlings inoculated with M1 after two days, but not on the control leaves. The pathogenicity tests were repeated for three times. Fungal cultures reisolated from the infected leaves were identical to the original colonies and conidia, completing Koch's postulates. The internal transcribed spacer (ITS, primers ITS1 and ITS4) region of ribosomal DNA (OQ553785), calmodulin (cmdA, primers CAL-228F and CAL2Rd)(OQ559103), RNA polymerase II second largest subunit (rpb2, primers RPB2-5F2 and RPB2-7cR) (OQ559104) and ß-tubulin (tub2, primers Bt2a and Bt2b) (OQ559105) of M1 had 100%, 98.52%, 98.98% and 98.98% identity with the sequences of Paramyrothecium breviseta CBS544.75 (KU846289 for ITS, KU846262 for cmdA, KU846351 for rpb2, and KU846406 for tub2), respectively. In the phylogenic tree based on ITS, cmdA, rpb2 and tub2 gene sequences, the pure culture M1 clustered with P. breviseta CBS544.75, SDBR-CMU387, DRL4 and DRL3, which has been reported as the pathogen of leaf spot of Coffea arabica in China, C. canephora in China and Thailand (Wu et al. 2021; Withee et al. 2022). Molecular and morphological observations showed the pure culture M1 were P. breviseta (Withee et al. 2022), in addition the disease was named as target spot dueing to the typical target symptom on the leaves. To our knowledge, this is the first report of P. breviseta on A. muelleri from Yunnan, China, as well as worldwide. This disease can caused serious economic losses of A. muelleri dueing to that it can result 5-8% death of the plants in the nursery.
RESUMO
BACKGROUND: Tendon-bone interface (TBI) healing in chronic rotator cuff injury (CRCI) in older individuals is a common clinical challenge due to cellular senescence, as well as decreased tissue repair and regeneration. Many studies have demonstrated the antiaging, improved tissue repair, and bone regeneration properties of rapamycin (RPM) in multiple age-related diseases. This study aimed to explore the effects of RPM on TBI healing after CRCI in an aging rat model. METHODS: A CRCI model was established in 60 Sprague-Dawley rats (24 months old). Rats were then randomly allocated into the control, 0.1 µg RPM, and 1 µg RPM groups. At 4 and 8 weeks postreconstructive surgery, the supraspinatus tendon-humerus complexes were harvested for biomechanical, microimaging, histological, and immunohistochemical evaluations. RESULTS: Biomechanical testing results demonstrated that the failure load, ultimate strength, and stiffness of the 2 RPM groups were significantly higher than those of the control group at 4 and 8 weeks postoperatively. Microradiographically, both RPM groups had significantly higher values of bone mineral density and the ratio of trabecular bone volume to total volume than controls at each time point. Moreover, the RPM groups had higher histological scores and showed better regenerated TBI, characterized by better organizational tissue, more fibrocartilage cells, and more bone formation. Immunohistochemical evaluations showed that RUNX2-, SOX9-, and SCX-positive cells were significantly more in the 2 RPM groups than in the controls at each time point. CONCLUSIONS: RPM may effectively enhance CRCI healing after reconstruction by facilitating osteogenesis, tenogenesis, and fibrocartilage reformation at the TBI, as well as improving biomechanical properties.
Assuntos
Modelos Animais de Doenças , Ratos Sprague-Dawley , Lesões do Manguito Rotador , Sirolimo , Cicatrização , Animais , Lesões do Manguito Rotador/cirurgia , Ratos , Cicatrização/efeitos dos fármacos , Sirolimo/farmacologia , Envelhecimento/fisiologia , Fenômenos Biomecânicos , Masculino , Doença Crônica , Distribuição Aleatória , Manguito Rotador/cirurgiaRESUMO
Occlusion presents a major obstacle in the development of pedestrian detection technologies utilizing computer vision. This challenge includes both inter-class occlusion caused by environmental objects obscuring pedestrians, and intra-class occlusion resulting from interactions between pedestrians. In complex and variable urban settings, these compounded occlusion patterns critically limit the efficacy of both one-stage and two-stage pedestrian detectors, leading to suboptimal detection performance. To address this, we introduce a novel architecture termed the Attention-Guided Feature Enhancement Network (AGFEN), designed within the deep convolutional neural network framework. AGFEN improves the semantic information of high-level features by mapping it onto low-level feature details through sampling, creating an effect comparable to mask modulation. This technique enhances both channel-level and spatial-level features concurrently without incurring additional annotation costs. Furthermore, we transition from a traditional one-to-one correspondence between proposals and predictions to a one-to-multiple paradigm, facilitating non-maximum suppression using the prediction set as the fundamental unit. Additionally, we integrate these methodologies by aggregating local features between regions of interest (RoI) through the reuse of classification weights, effectively mitigating false positives. Our experimental evaluations on three widely used datasets demonstrate that AGFEN achieves a 2.38% improvement over the baseline detector on the CrowdHuman dataset, underscoring its effectiveness and potential for advancing pedestrian detection technologies.
RESUMO
Conservation practices from the perspective of functional diversity (FD) and conservation prioritization need to account for the impacts of exotic species in freshwater ecosystems. This work first simulated the influence of exotic species on the values of FD in a schemed mechanistic model, and then a practical case study of conservation prioritization was performed in the Min River, the largest river in southeastern China, to discuss whether including exotic species alters prioritization. The mechanistic model revealed that exotic species significantly altered the expected FD if the number of exotic species occupied 2% of the community. Joint species distribution modelling indicated that the highest FD occurred in the west, northwest and north upstreams of the Min River. Values of FD in 64.69% of the basin decreased after the exotic species were removed from calculation. Conservation prioritization with the Zonation software proved that if first the habitats of exotic species were removed during prioritization, 62.75% of the highest prioritized areas were shifted, average species representation of the endemic species was improved and mean conservation efficiency was increased by 7.53%. Existence of exotic species will significantly alter the metrics of biodiversity and the solution for conservation prioritization, and negatively weighting exotic species in the scope of conservation prioritization is suggested to better protect endemic species. This work advocates a thorough estimate of the impacts of exotic species on FD and conservation prioritization, providing complementary evidence for conservation biology and valuable implications for local freshwater fish conservation.
Assuntos
Ecossistema , Rios , Animais , Conservação dos Recursos Naturais , Biodiversidade , ChinaRESUMO
MOTIVATION: Cryo-electron microscopy (cryo-EM) is a widely used technology for ultrastructure determination, which constructs the 3D structures of protein and macromolecular complex from a set of 2D micrographs. However, limited by the electron beam dose, the micrographs in cryo-EM generally suffer from the extremely low signal-to-noise ratio (SNR), which hampers the efficiency and effectiveness of downstream analysis. Especially, the noise in cryo-EM is not simple additive or multiplicative noise whose statistical characteristics are quite different from the ones in natural image, extremely shackling the performance of conventional denoising methods. RESULTS: Here, we introduce the Noise-Transfer2Clean (NT2C), a denoising deep neural network (DNN) for cryo-EM to enhance image contrast and restore specimen signal, whose main idea is to improve the denoising performance by correctly learning the noise distribution of cryo-EM images and transferring the statistical nature of noise into the denoiser. Especially, to cope with the complex noise model in cryo-EM, we design a contrast-guided noise and signal re-weighted algorithm to achieve clean-noisy data synthesis and data augmentation, making our method authentically achieve signal restoration based on noise's true properties. Our work verifies the feasibility of denoising based on mining the complex cryo-EM noise patterns directly from the noise patches. Comprehensive experimental results on simulated datasets and real datasets show that NT2C achieved a notable improvement in image denoising, especially in background noise removal, compared with the commonly used methods. Moreover, a case study on the real dataset demonstrates that NT2C can greatly alleviate the obstacles caused by the SNR to particle picking and simplify the identifying of particles. AVAILABILITYAND IMPLEMENTATION: The code is available at https://github.com/Lihongjia-ict/NoiseTransfer2Clean/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Algoritmos , Redes Neurais de Computação , Microscopia Crioeletrônica/métodos , Razão Sinal-Ruído , Proteínas , Processamento de Imagem Assistida por Computador/métodosRESUMO
The thermal compensatory response of microbial respiration contributes to a decrease in warming-induced enhancement of soil respiration over time, which could weaken the positive feedback between the carbon cycle and climate warming. Climate warming is also predicted to cause a worldwide decrease in soil moisture, which has an effect on the microbial metabolism of soil carbon. However, whether and how changes in moisture affect the thermal compensatory response of microbial respiration are unexplored. Here, using soils from an 8-year warming experiment in an alpine grassland, we assayed the thermal response of microbial respiration rates at different soil moisture levels. The results showed that relatively low soil moisture suppressed the thermal compensatory response of microbial respiration, leading to an enhanced response to warming. A subsequent moisture incubation experiment involving off-plot soils also showed that the response of microbial respiration to 100 d warming shifted from a slight compensatory response to an enhanced response with decreasing incubation moisture. Further analysis revealed that such respiration regulation by moisture was associated with shifts in enzymatic activities and carbon use efficiency. Our findings suggest that future drought induced by climate warming might weaken the thermal compensatory capacity of microbial respiration, with important consequences for carbon-climate feedback.
Assuntos
Microbiologia do Solo , Solo , Clima , Respiração , Carbono/metabolismoRESUMO
BACKGROUND: Cancer-therapy-induced mucosal injury (CMI) is a common and deleterious complication that affects patients undergoing cancer therapies. This study was aimed at elucidating knowledge bases and predicting research trends of this field, by analyzing the bibliographic data of CMI. METHODS: The bibliographic data of CMI from 2001 to 2021 were extracted from the Web of Science Core Collection database in March 2022. After screening, a total of 8181 articles and reviews were included in the study. CiteSpace and VOSviewer were applied to analyze and visualize cooperation, cooccurrence, cocitation, and coupling networks. RESULTS: A steady increase in publications and a burst of citation since 2019 were seen in the subject. Supportive Care in Cancer, International Journal of Radiation Oncology Biology Physics, Annals of Oncology, Cancer, and Radiotherapy and Oncology were the most influential journals of this field. The University of Adelaide, University of Texas MD Anderson Cancer Center, and Memorial Sloan Kettering Cancer Center were the top three most productive institutions. ST Sonis, RV Lalla, JB Epstein, and DMK Keefe were the authors with impressive publications and citations. The intellectual base was the publication network of improved treatments based on updating knowledge of CMI. The future trends would be the pathogenesis of CMI, mechanism-based interventions, microbiota of oral and gastrointestinal mucosa, and photobiomodulation. CONCLUSION: This study introduced the evolving publication network and predicted the research trends of CMI, which helped researchers to obtain detailed and reliable knowledge of the discipline, and focus on the most urgent unsolved problems in this field.
Assuntos
Mucosa , Neoplasias , Humanos , Bibliometria , Bases de Dados Factuais , Neoplasias/radioterapiaRESUMO
Liquid-phase electron microscopy is highly desirable for observing biological samples in their native liquid state at high resolution. We developed liquid imaging approaches for biological cells using scanning electron microscopy. Novel approaches included scanning transmission electron imaging using a liquid-cell apparatus (LC-STEM), as well as correlative cathodoluminescence and electron microscopy (CCLEM) imaging. LC-STEM enabled imaging at a â¼2 nm resolution and excellent contrast for the precise recognition of localization, distribution, and configuration of individually labeled membrane proteins on the native cells in solution. CCLEM improved the resolution of fluorescent images down to 10 nm. Liquid SEM technologies will bring unique and wide applications to the study of the structure and function of cells and membrane proteins in their near-native states at the monomolecular level.
Assuntos
Proteínas de Membrana/ultraestrutura , Microscopia Eletrônica de Varredura , Linhagem Celular Tumoral , Receptores ErbB/ultraestrutura , Fluorescência , HumanosRESUMO
OBJECTIVE: There is insufficient evidence to evaluate the long-term outcomes of robotic radical gastrectomy. The aim of this study was to compare the radical results and long-term outcomes of robotic and laparoscopic radical gastrectomy. METHODS: We prospectively collected and retrospectively analyzed the general clinicopathological data of gastric cancer patients treated with robotic radical gastrectomy (RG) and laparoscopic radical gastrectomy (LG) from July 2016 to July 2018 at Fujian Medical University Union Hospital. The RG cohort was matched 1:3 with the LG cohort by using propensity score matching (PSM). The primary endpoints of the study were 3-year overall survival (OS) and 3-year relapse-free survival (RFS). RESULTS: The study included 221 patients treated with RG and 1106 patients treated with LG for gastric cancer. After PSM, 211 patients were included in the RG cohort, and 663 patients were included in the LG cohort. The 3-year OS rate was 81.0% in the robotic cohort and 79.3% in the laparoscopic cohort (log-rank test, P = 0.516). The 3-year RFS rate was 78.7% in the robotic cohort and 75.6% in the laparoscopic cohort (log-rank test, P = 0.600). In the subgroup analyses, no significant differences were noted between the RG and LG cohorts in terms of 3-year OS and 3-year RFS (all P > 0.05). The therapeutic value index of each lymph node station dissection in the robotic cohort was comparable to that in the laparoscopic cohort. CONCLUSION: Robotic radical gastrectomy can achieve radical results and long-term outcomes comparable to laparoscopic surgery, and further multicenter prospective studies can be conducted to assess the clinical efficacy of robotic radical gastrectomy.
Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Pontuação de Propensão , Estudos Retrospectivos , Estudos Prospectivos , Recidiva Local de Neoplasia/cirurgia , Gastrectomia/métodos , Laparoscopia/efeitos adversos , Resultado do Tratamento , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgiaRESUMO
Lentinula edodes is one of the most important commercially cultivated edible mushrooms. It is well known that gypsum (CaSO4·2H2O) supplementation in sawdust medium increases the yield of L. edodes, while the physiological mechanisms remain unclear. Our previous study showed that the acidification of the medium to pH 3.5-4.0 was essential for the growth of L. edodes. In this study, it was found that the oxalic acid excreted by L. edodes was responsible for the acidification of the medium. The biosynthesis of oxalic acid was regulated by the ambient pH and buffer capacity of the medium. To acidify the sawdust medium, the concentrations of total and soluble oxalate were 51.1 mmol/kg and 10.8 mmol/kg, respectively. However, when the concentration of soluble oxalate was 8.0 mmol/kg, the mycelial growth rate decreased by 29% compared with the control. Soluble oxalate was toxic to L. edodes, while soluble sulfate was nontoxic. CaSO4 reacted with soluble oxalate to form nontoxic insoluble CaC2O4 and the strong acid H2SO4. When the CaSO4 supplemented in sawdust medium was more than 25 mmol/kg, the soluble oxalate decreased to less than 1 mmol/kg, and the mycelial growth rate increased by 32% compared with the control. In conclusion, gypsum improved the growth and yield by relieving the toxicity of oxalate and facilitating the acidification of sawdust medium. KEY POINTS: ⢠L. edodes excretes oxalic acid to acidify the ambient environment for growth. ⢠Soluble oxalate is toxic to L. edodes. ⢠Gypsum increases growth by reacting with oxalate to relieve its toxicity.
Assuntos
Agaricales , Cogumelos Shiitake , Sulfato de Cálcio , Micélio , Ácido OxálicoRESUMO
Breast cancer grading methods based on hematoxylin-eosin (HE) stained pathological images can be summarized into two categories. The first category is to directly extract the pathological image features for breast cancer grading. However, unlike the coarse-grained problem of breast cancer classification, breast cancer grading is a fine-grained classification problem, so general methods cannot achieve satisfactory results. The second category is to apply the three evaluation criteria of the Nottingham Grading System (NGS) separately, and then integrate the results of the three criteria to obtain the final grading result. However, NGS is only a semiquantitative evaluation method, and there may be far more image features related to breast cancer grading. In this paper, we proposed a Nuclei-Guided Network (NGNet) for breast invasive ductal carcinoma (IDC) grading in pathological images. The proposed nuclei-guided attention module plays the role of nucleus attention, so as to learn more nuclei-related feature representations for breast IDC grading. In addition, the proposed nuclei-guided fusion module in the fusion process of different branches can further enable the network to focus on learning nuclei-related features. Overall, under the guidance of nuclei-related features, the entire NGNet can learn more fine-grained features for breast IDC grading. The experimental results show that the performance of the proposed method is better than that of state-of-the-art method. In addition, we released a well-labeled dataset with 3644 pathological images for breast IDC grading. This dataset is currently the largest publicly available breast IDC grading dataset and can serve as a benchmark to facilitate a broader study of breast IDC grading.
Assuntos
Neoplasias da Mama , Mama/patologia , Neoplasias da Mama/patologia , Núcleo Celular , Amarelo de Eosina-(YS) , Feminino , Hematoxilina , Humanos , Processamento de Imagem Assistida por Computador/métodosRESUMO
OBJECTIVE: Development and validation of a radiomics nomogram for predicting recurrence and adjuvant therapy benefit populations in high/intermediate-risk gastrointestinal stromal tumors (GISTs) based on computed tomography (CT) radiomic features. METHODS: Retrospectively collected from 2009.07 to 2015.09, 220 patients with pathological diagnosis of intermediate- and high-risk stratified gastrointestinal stromal tumors and received imatinib treatment were randomly divided into (6:4) training cohort and validation cohort. The 2D-tumor region of interest (ROI) was delineated from the portal-phase images on contrast-enhanced (CE) CT, and radiological features were extracted. The most valuable radiological features were obtained using a Lasso-Cox regression model. Integrated construction was conducted of nomograms of radiomics characteristics to predict recurrence-free survival (RFS) in patients receiving adjuvant therapy. RESULTS: Eight radiomic signatures were finally selected. The area under the curve (AUC) of the radiomics signature model for predicting 3-, 5-, and 7-year RFS in the training and validation cohorts (training cohort AUC = 0.80, 0.84, 0.76; validation cohort AUC = 0.78, 0.80, 0.76). The constructed radiomics nomogram was more accurate than the clinicopathological nomogram for predicting RFS in GIST (C-index: 0.864 95%CI, 0.817-0.911 vs. 0.733 95%CI, 0.675-0.791). Kaplan-Meier survival curve analysis showed a greater benefit from adjuvant therapy in patients with high radiomics scores (training cohort: p < 0.0001; validation cohort: p = 0.017), while there was no significant difference in the low-score group (p > 0.05). CONCLUSION: In this study, a nomogram constructed based on preoperative CT radiomics features could be used for RFS prediction in high/intermediate-risk GISTs and assist the clinical decision-making for GIST patients.
Assuntos
Tumores do Estroma Gastrointestinal , Tumores do Estroma Gastrointestinal/diagnóstico por imagem , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Humanos , Mesilato de Imatinib/uso terapêutico , Nomogramas , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodosRESUMO
Metabolites are not only substrates in metabolic reactions, but also signaling molecules controlling a wide range of cellular processes. Discovery of the oncometabolite 2-hydroxyglutarate provides an important link between metabolic dysfunction and cancer, unveiling the signaling function of metabolites in regulating epigenetic and epitranscriptomic modifications, genome integrity, and signal transduction. It is now known that cancer cells remodel their metabolic network to support biogenesis, caused by or resulting in the dysregulation of various metabolites. Cancer cells can sense alterations in metabolic intermediates to better coordinate multiple biological processes and enhance cell metabolism. Recent studies have demonstrated that metabolite signaling is involved in the regulation of malignant transformation, cell proliferation, epithelial-to-mesenchymal transition, differentiation blockade, and cancer stemness. Additionally, intercellular metabolite signaling modulates inflammatory response and immunosurveillance in the tumor microenvironment. Here, we review recent advances in cancer-associated metabolite signaling. An in depth understanding of metabolite signaling will provide new opportunities for the development of therapeutic interventions that target cancer.