Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Horm Behav ; 102: 129-138, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29778459

RESUMO

Bisphenol-A (BPA) is a well-known environmental endocrine disruptor. Developmental exposure to BPA affected a variety of behaviors in multiple model organisms. Our recent study found that exposure to BPA during adulthood aggravated anxiety- and depression-like states in male mice but not in females. In this study, 11-w-old gonadectomied (GDX) male mice daily received subcutaneous injections of testosterone propionate (TP, 0.5 mg/kg), TP and BPA (0.04, 0.4, or 4 mg/kg), or vehicle for 45 days. BPA (0.4 or 4 mg/kg) did not affect the elevated plus maze task of GDX mice but shortened the time on open arms and decreased the frequency of head dips of sham and TP-GDX mice. In forced swim task, BPA prolonged the total time of immobility of both sham and TP-GDX mice but not GDX mice. In addition, BPA reduced the levels of T in the serum and the brain of sham and TP-GDX mice. Western blot analysis further showed that BPA reduced the levels of androgen receptor (AR) and GABA(A)α2 receptor of the hippocampus and the amygdala in sham and inhibited the rescue of TP in these proteins levels of GDX mice. Meanwhile, BPA decreased the level of phospho-ERK1/2 in these two brain regions of sham and TP-GDX mice. These results suggest that long-term exposure to BPA inhibited TP-improved anxiety- and depression-like behaviors in GDX male mice. The down-regulated levels of GABA(A)α2 receptor and AR and an inhibited activity of ERK1/2 pathway in the hippocampus and the amygdala may be involved in these process.


Assuntos
Ansiedade/prevenção & controle , Compostos Benzidrílicos/farmacologia , Depressão/prevenção & controle , Disruptores Endócrinos/farmacologia , Fenóis/farmacologia , Testosterona/farmacologia , Animais , Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Depressão/induzido quimicamente , Antagonismo de Drogas , Feminino , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Orquiectomia , Testosterona/sangue
2.
Neurotoxicol Teratol ; 105: 107374, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097242

RESUMO

Social behavior is sexually dimorphic, which is regulated by gonadal hormones in the brain. Our recent study found that exposure to low doses of bisphenol-A (BPA) during adolescence, permanently alters social behavior in adult male mice, but the underlying mechanisms remain unclear. Using adolescent gonadectomy (GDX) male mice with testosterone propionate (TP, 0.5 mg/kg) supplement (TP-GDX), this study showed that BPA antagonized promoting effects of TP on social interaction, sexual behavior, and aggression in GDX mice. BPA eliminated the reversal effects of TP on GDX-induced decrease in the number of immunoreactive to arginine vasopressin (AVP-ir) neurons in the medial amygdala (MeA) and the levels of AVP receptor 1a (V1aR) in the MeA and the nucleus accumbens (NAc). In addition, BPA removed down-regulation in the levels of dopamine (DA) transporter (DAT) and DA receptor 1 (DR1) in the NAc of TP-GDX mice. BPA exposure reduced testosterone (T) levels in the brain and serum and the expression of androgen receptor (AR) protein in the amygdala and striatum of sham-operated and TP-GDX males. These results suggest that adolescent exposure to BPA inhibits regulation of androgen in AVP and DA systems of the brain regions associated with social behavior, and thus alters social behaviors of adult male mice.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa