Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(10): e112196, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36994549

RESUMO

Blood vessels can play dual roles in tissue growth by transporting gases and nutrients and by regulating tissue stem cell activity via signaling. Correlative evidence implicates skin endothelial cells (ECs) as signaling niches of hair follicle stem cells (HFSCs), but functional demonstration from gene depletion of signaling molecules in ECs is missing to date. Here, we show that depletion of the vasculature-factor Alk1 increases BMP4 secretion from ECs, which delays HFSC activation. Furthermore, while previous evidence suggests a lymphatic vessel role in adult HFSC activation possibly through tissue drainage, a blood vessel role has not yet been addressed. Genetic perturbation of the ALK1-BMP4 axis in all ECs or the lymphatic ECs specifically unveils inhibition of HFSC activation by blood vessels. Our work suggests a broader relevance of blood vessels, adding adult HFSCs to the EC functional repertoire as signaling niches for the adult stem cells.


Assuntos
Receptores de Activinas Tipo II , Células-Tronco Adultas , Proteína Morfogenética Óssea 4 , Folículo Piloso , Animais , Camundongos , Células Endoteliais , Transdução de Sinais , Células-Tronco , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo
2.
EMBO J ; 40(11): e107135, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33880808

RESUMO

Stem cells are the essential source of building blocks for tissue homeostasis and regeneration. Their behavior is dictated by both cell-intrinsic cues and extrinsic cues from the microenvironment, known as the stem cell niche. Interestingly, recent work began to demonstrate that hair follicle stem cells (HFSCs) are not only passive recipients of signals from the surroundings, but also actively send out signals to modulate the organization and function of their own niches. Here, we discuss recent findings, and briefly refer to the old, on the interaction of HFSCs and their niches with the emphasis on the outwards signals from HFSCs toward their niches. We also highlight recent technology advancements that further promote our understanding of HFSC niches. Taken together, the HFSCs emerge as a skin-organizing center rich in signaling output for niche remodeling during various stages of adult skin homeostasis. The intricate crosstalk between HFSCs and their niches adds important insight to skin biology that will inform clinical and bioengineering fields aiming to build complete and functional 3D organotypic cultures for skin replacement therapies.


Assuntos
Células-Tronco Adultas/metabolismo , Folículo Piloso/citologia , Transdução de Sinais , Células-Tronco Adultas/citologia , Animais , Comunicação Celular , Folículo Piloso/metabolismo , Homeostase , Humanos , Nicho de Células-Tronco
3.
Exp Dermatol ; 30(4): 430-447, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33278851

RESUMO

Adult hair follicle stem cells (HFSCs) undergo dynamic and periodic molecular changes in their cellular states throughout the hair homeostatic cycle. These states are tightly regulated by cell-intrinsic mechanisms and by extrinsic signals from the microenvironment. HFSCs are essential not only for fuelling hair growth, but also for skin wound healing. Increasing evidence suggests an important role of HFSCs in organizing multiple skin components around the hair follicle, thus functioning as an organizing centre during adult skin homeostasis. Here, we focus on recent findings on cell-intrinsic mechanisms of HFSC homeostasis, which include transcription factors, histone modifications, DNA regulatory elements, non-coding RNAs, cell metabolism, cell polarity and post-transcriptional mRNA processing. Several transcription factors are now known to participate in well-known signalling pathways that control hair follicle homeostasis, as well as in super-enhancer activities to modulate HFSC and progenitor lineage progression. Interestingly, HFSCs have been shown to secrete molecules that are important in guiding the organization of several skin components around the hair follicle, including nerves, arrector pili muscle and vasculature. Finally, we discuss recent technological advances in the field such as single-cell RNA sequencing and live imaging, which revealed HFSC and progenitor heterogeneity and brought new light to understanding crosstalking between HFSCs and the microenvironment. The field is well on its way to generate a comprehensive map of molecular interactions that should serve as a solid theoretical platform for application in hair and skin disease and ageing.


Assuntos
Folículo Piloso/fisiologia , Homeostase/fisiologia , Fenômenos Fisiológicos da Pele , Células-Tronco/fisiologia , Animais , Humanos , Camundongos
4.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993228

RESUMO

Adult skin homeostasis involves global reorganization of dermal lineages at different stages of the mouse hair growth cycle. Vascular endothelial cadherin (VE-cadherin encoded by Cdh5 ) expressing cells from blood and lymphatic vasculature structures are known to remodel during the adult hair cycle. Here we employ single-cell RNA-sequencing (scRNA-seq) 10x-genomics analysis of FACS-sorted VE-cadherin expressing cells marked via Cdh5-CreER genetic labeling at resting (telogen) and growth (anagen) stage of hair cycle. Our comparative analysis between the two stages uncovers a persistent Ki67 + proliferative EC population and documents changes in EC population distribution and gene expression. Global gene expression changes in all the analyzed populations revealed bioenergetic metabolic changes that may drive vascular remodeling during HF growth phase, alongside a few highly restricted cluster-specific gene expression differences. This study uncovers active cellular and molecular dynamics of adult skin endothelial lineages during hair cycle that may have broad implications in adult tissue regeneration and for understanding vascular disease.

5.
Nat Commun ; 14(1): 5623, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699906

RESUMO

Vascular endothelial (VE)-cadherin is a well-recognized endothelial cell marker. One of its interacting partners, the TGF-ß receptor Alk1, is essential in endothelial cells for adult skin vasculature remodeling during hair homeostasis. Using single-cell transcriptomics, lineage tracing and gene targeting in mice, we characterize the cellular and molecular dynamics of skin VE-cadherin+ cells during hair homeostasis. We describe dynamic changes of VE-cadherin+ endothelial cells specific to blood and lymphatic vessels and uncover an atypical VE-cadherin+ cell population. The latter is not a predicted adult endovascular progenitor, but rather a non-endothelial mesenchymal perineurial cell type, which forms nerve encapsulating tubular structures that undergo remodeling during hair homeostasis. Alk1 acts in the VE-cadherin+ perineurial cells to maintain proper homeostatic nerve branching by enforcing basement membrane and extracellular matrix molecular signatures. Our work implicates the VE-cadherin/Alk1 duo, classically known as endothelial-vascular specific, in perineurial-nerve homeostasis. This has broad implications in vascular and nerve disease.


Assuntos
Células Endoteliais , Cabelo , Animais , Camundongos , Caderinas/genética , Homeostase
6.
Elife ; 82019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31343406

RESUMO

Skin vasculature cross-talking with hair follicle stem cells (HFSCs) is poorly understood. Skin vasculature undergoes dramatic remodeling during adult mouse hair cycle. Specifically, a horizontal plexus under the secondary hair germ (HPuHG) transiently neighbors the HFSC activation zone during the quiescence phase (telogen). Increased density of HPuHG can be induced by reciprocal mutations in the epithelium (Runx1) and endothelium (Alk1) in adult mice, and is accompanied by prolonged HFSC quiescence and by delayed entry and progression into the hair growth phase (anagen). Suggestively, skin vasculature produces BMP4, a well-established HFSC quiescence-inducing factor, thus contributing to a proliferation-inhibitory environment near the HFSC. Conversely, the HFSC activator Runx1 regulates secreted proteins with previously demonstrated roles in vasculature remodeling. We suggest a working model in which coordinated remodeling and molecular cross-talking of the adult epithelial and endothelial skin compartments modulate timing of HFSC activation from quiescence for proper tissue homeostasis of adult skin.


Assuntos
Diferenciação Celular , Folículo Piloso/fisiologia , Cabelo/crescimento & desenvolvimento , Fenômenos Fisiológicos da Pele , Células-Tronco/fisiologia , Remodelação Vascular , Animais , Homeostase , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa