Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 20(7): 3734-3748, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34080425

RESUMO

Salvianolic acid B (Sal B), the main water-soluble compound in Salvia miltiorrhiza, is known to exhibit anti-inflammatory activity, however, the underlying mechanism(s) is not completely uncovered. In this study, Sal B inhibited lipopolysaccharide (LPS)-induced M1 activation and promoted the transformation of macrophages from M1- to M2-type polarization. The altered lipid profiles of LPS-induced RAW 264.7 macrophages were partly restored by Sal B treatment. At the proteomic level, a total of 5612 proteins were identified and 432 were significantly changed in macrophages under LPS treatment. The differential proteins were classified into four clusters according to their expression level in blank, LPS, and Sal B groups. LPS-induced proteins in Cluster IV including Kif14, Mincle, and Sec62 were significantly recovered to almost normal levels by Sal B treatment. Use of knockdown Mincle or picetannol (inhibitor of Syk) led to significant reductions in the gene expressions of IL-1ß, iNOS, and IL-12 and the release of NO. The converse was, however, observed for overexpressed Mincle. In addition, LPS- or trehalose-6,6-dibehenate-induced phosphorylation of Syk and PKCδ was decreased by Sal B treatment. These results suggest that Sal B inhibition of LPS-induced inflammation might be through inhibition of the Mincle-Syk-PKCδ signaling pathway.


Assuntos
Macrófagos , Proteômica , Anti-Inflamatórios/farmacologia , Benzofuranos , Lipopolissacarídeos/farmacologia
2.
Plant J ; 104(3): 781-799, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32772407

RESUMO

Salvianolic acids (SalAs), a group of secondary metabolites in Salvia miltiorrhiza, are widely used for treating cerebrovascular diseases. Their biosynthesis is modulated by a variety of abiotic factors, including ultraviolet-B (UV-B) irradiation; however, the underlying mechanisms remain largely unknown. Here, an integrated metabolomic, proteomic, and transcriptomic approach coupled with transgenic analyses was employed to dissect the mechanisms underlying UV-B irradiation-induced SalA biosynthesis. Results of metabolomics showed that 28 metabolites, including 12 SalAs, were elevated in leaves of UV-B-treated S. miltiorrhiza. Meanwhile, the contents of several phytohormones, including jasmonic acid and salicylic acid, which positively modulate the biosynthesis of SalAs, also increased in UV-B-treated S. miltiorrhiza. Consistently, 20 core biosynthetic enzymes and numerous transcription factors that are involved in SalA biosynthesis were elevated in treated samples as indicated by a comprehensive proteomic analysis. Correlation and gene expression analyses demonstrated that the NAC1 gene, encoding a NAC transcriptional factor, was positively involved in UV-B-induced SalA biosynthesis. Accordingly, overexpression and RNA interference of NAC1 increased and decreased SalA contents, respectively, through regulation of key biosynthetic enzymes. Furthermore, ChIP-qPCR and Dual-LUC assays showed that NAC1 could directly bind to the CATGTG and CATGTC motifs present in the promoters of the SalA biosynthesis-related genes PAL3 and TAT3, respectively, and activate their expression. Our results collectively demonstrate that NAC1 plays a crucial role in UV-B irradiation-induced SalA biosynthesis. Taken together, our findings provide mechanistic insights into the UV-B-induced SalA biosynthesis in S. miltiorrhiza, and shed light on a great potential for the development of SalA-abundant varieties through genetic engineering.


Assuntos
Proteínas de Plantas/genética , Polifenóis/biossíntese , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/efeitos da radiação , Alcenos , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Metabolômica/métodos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polifenóis/genética , Proteômica/métodos , Interferência de RNA , Salvia miltiorrhiza/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Raios Ultravioleta , Regulação para Cima
3.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2835-2847, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28736181

RESUMO

Altered mitochondrial oxidation increases vulnerability to cardiac ischemia/reperfusion (I/R) injury in metabolic disorders. However, the metabolic signaling responsible for the dysfunction remains partly unknown. We sought to test whether or not hypoxic succinate accumulation could inhibit pyruvate dehydrogenase (PDH) activity and subsequently aggravate I/R injury. Results showed that saturated fatty acid palmitate stimulation increased fatty acid oxidation and induced hypoxia in cardiomyocytes, leading to succinate accumulation. Intracellular succinate induced hypoxia inducible factor-1α (HIF-1α) expression and impaired PDH activity via upregulation of pyruvate dehydrogenase kinase 4 (PDK4) expression. Luciferase reporter assay showed that succinate increased PDK4 expression through gene promoter induction in a HIF-1α-dependent manner. Palmitate also induced the release of succinate into extracellular space. By activating GRP91, extracellular succinate induced the translocation of PKCδ to mitochondria and further exacerbated PDH impairment. These results demonstrated that succinate impaired PDH activity via GPR91-dependent and independent pathways. Ginsenoside Rb1 (a major compound isolated from ginseng) and trimetazidine (fatty acid ß-oxidation inhibitor) prevented hypoxic succinate accumulation in cardiomyocytes and improved PDH activity by blocking succinate-associated HIF-1α activation and GPR91 signaling. Through improving PDH activity, Rb1 and trimetazidine prevented cardiac acidification, ameliorated mitochondrial dysfunction and thereby reduced apoptosis during hypoxia/reoxygenation insult. In isolated working rat hearts perfused with palmitate and in high-fat diet-fed mice, early intervention of Rb1 and trimetazidine reduced succinate production and resultantly increased heart resistance to ischemia/reperfusion injury. Taken together, our findings demonstrated that early intervention by targeting inhibition of succinate accumulation-induced PDH impairment is an effective strategy to alleviate I/R injury.


Assuntos
Ginsenosídeos/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miocárdio/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Succínico/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley
4.
Food Funct ; 11(10): 8788-8799, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32955540

RESUMO

Arecoline is one of the main medicinal constituents in areca. Melatonin is an amine molecule with multiple functions in plants and animals. However, the interaction between arecoline and melatonin remains unknown. Herein, metabolomics analysis showed that multiple metabolites including arecoline were induced in areca by exogenous melatonin. In vitro assay demonstrated that the induced arecoline had strong antioxidant capacities, being similar to the traditional function of melatonin. Both arecoline and melatonin could significantly improve plant disease resistance against Colletotrichum kahawae and delay post-harvest physiological deterioration (PPD) of areca fruits, through modulation of the levels of jasmonic acid (JA), salicylic acid (SA), ethylene (ETH) and abscisic acid (ABA), reactive oxygen species (ROS) level as well as glycolytic activity. In addition, animal and cell assays indicated that arecoline and melatonin could commonly enhance anti-inflammatory effects through regulating ROS and hypoxia inducible factor-1α (HIF-1α). Taken together, melatonin could serve as an inducer of arecoline and they show coordinated roles in antioxidative activity and immune responses in areca and animals. This study greatly extends the knowledge of the action of melatonin in areca and animals.


Assuntos
Antioxidantes/farmacologia , Arecolina/farmacologia , Imunidade/efeitos dos fármacos , Melatonina/farmacologia , Animais , Areca/imunologia , Areca/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo
5.
J Trace Elem Med Biol ; 49: 72-78, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29895374

RESUMO

Compounds containing trace elements copper or zinc are potential gout and hyperuricemia suppressant by virtue of their inhibiting effect on xanthine oxidase/xanthine dehydrogenase (XOD/XDH) and anti-inflammatory and anti-oxidative function. In this study, compounds Cu(hmy-paa)·SO4·H2O (simplified as CuHP) and Zn(hmy-paa)·SO4·H2O (simplified as ZnHP) are synthesized, where hmy-paa stands for 3-(4-hydroxy-3-methoxyphenyl)-N-(1H-pyrazol-3-yl)acrylamide). The ligand hmy-paa is composed of functional ferulic acid and 3-aminopyrazole. The XOD and XDH activity of the mouse liver homogenate could efficiently be inhibited by CuHP and ZnHP. XOD has been recognized as one of the promising targets for the treatment of hyperuricemia. Fluorescence spectrometry study indicates that the interaction between the compound and XOD could be strengthened by the introduction of metals. In vitro drug efficacy study illustrates that metals copper and zinc distinctly improves the uric acid reducing efficacy by suppressing XOD activation. Hyperuricemia mouse model is induced by co-treatment of hypoxanthine and oteracil potassium. Intraperitoneal injection of CuHP and ZnHP to hyperuricemia mice exhibits a significant effect on reducing serum uric acid. The serum creatinine value detection indicates that the side effect of CuHP and ZnHP on renal function is weak. The computational docking simulation exhibits the tightly binding mode between the compound and XOD. Consequently, compounds CuHP and ZnHP are new type candidates for the treatment of gout and hyperuricemia.


Assuntos
Cobre/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Oligoelementos/química , Xantina Oxidase/metabolismo , Zinco/química , Animais , Ácidos Cumáricos/metabolismo , Masculino , Camundongos , Ácido Úrico/metabolismo , Xantina Desidrogenase/metabolismo
7.
Cell Death Dis ; 9(6): 672, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867110

RESUMO

Altered mitochondrial metabolism acts as an initial cause for cardiovascular diseases and metabolic intermediate succinate emerges as a mediator of mitochondrial dysfunction. This work aims to investigate whether or not extracellular succinate accumulation and its targeted G protein-coupled receptor-91 (GPR91) activation induce cardiac injury through mitochondrial impairment. The results showed that extracellular succinate promoted the translocation of dynamin-related protein 1 (Drp1) to mitochondria via protein kinase Cδ (PKCδ) activation, and induced mitochondrial fission factor (MFF) phosphorylation via extracellular signal-regulated kinases-1/2 (ERK1/2) activation in a GPR91-dependent manner. As a result, enhanced localization of MFF and Drp1 in mitochondria promoted mitochondrial fission, leading to mitochondrial dysfunction and cardiomyocyte apoptosis. We further showed that inhibition of succinate release and GPR91 signaling ameliorated oxygen-glucose deprivation-induced injury in cardiomyocytes and isoproterenol-induced myocardial ischemia injury in mice. Taken together, these results showed that in response to cardiac ischemia, succinate release activated GPR91 and induced mitochondrial fission via regulation of PKCδ and ERK1/2 signaling branches. These findings suggest that inhibition of extracellular succinate-mediated GPR91 activation might be a potential therapeutic strategy for protecting cardiomyocytes from ischemic injury.


Assuntos
Dinâmica Mitocondrial/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Ácido Succínico/farmacologia , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Dinaminas/metabolismo , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glucose/deficiência , Isoproterenol , Masculino , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Isquemia Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Oxigênio , Proteína Quinase C-delta/metabolismo , Ratos , Receptores Acoplados a Proteínas G/química , Transdução de Sinais/efeitos dos fármacos
8.
Eur J Pharmacol ; 813: 84-93, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28739087

RESUMO

Adipose dysfunction links tightly to hepatic insulin resistance and gluconeogenesis. Ilexgenin A is reported with the ability to regulate lipid profile and protect the liver against high fat diet (HFD) -induced impairment. Here, we propose that ilexgenin A ameliorates hepatic insulin signaling and gluconeogenesis by regulating lipolysis in white adipose tissue (WAT). Pyruvate tolerance test and biochemical analysis coupled with the ex vivo siRNA knockdown and co-culture studies demonstrate that ilexgenin A suppresses inflammation-associated lipolysis in epididymal fat pad via 5'-AMP-activated protein kinase (AMPK) activation, thus inhibits diacylglycerol (DAG) accumulation and protein kinase C ε (PKCε) translocation in liver, leading to the improvement of insulin sensitivity and hepatic glucose production. These findings suggest that the relationship between adipose function and hepatic insulin action may be targeted by natural bioactive components for the potential treatment of hepatic insulin resistance related disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Resistência à Insulina , Lipólise/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Triterpenos/farmacologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ativação Enzimática/efeitos dos fármacos , Ácidos Graxos não Esterificados/sangue , Glicerol/sangue , Masculino , Camundongos , Ácido Pirúvico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Esterol Esterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa