Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neural Eng ; 21(2)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518365

RESUMO

Objective. Over the past decade, neural electrodes have played a crucial role in bridging biological tissues with electronic and robotic devices. This study focuses on evaluating the optimal tip profile and insertion speed for effectively implanting Paradromics' high-density fine microwire arrays (FµA) prototypes into the primary visual cortex (V1) of mice and rats, addressing the challenges associated with the 'bed-of-nails' effect and tissue dimpling.Approach. Tissue response was assessed by investigating the impact of electrodes on the blood-brain barrier (BBB) and cellular damage, with a specific emphasis on tailored insertion strategies to minimize tissue disruption during electrode implantation.Main results.Electro-sharpened arrays demonstrated a marked reduction in cellular damage within 50µm of the electrode tip compared to blunt and angled arrays. Histological analysis revealed that slow insertion speeds led to greater BBB compromise than fast and pneumatic methods. Successful single-unit recordings validated the efficacy of the optimized electro-sharpened arrays in capturing neural activity.Significance.These findings underscore the critical role of tailored insertion strategies in minimizing tissue damage during electrode implantation, highlighting the suitability of electro-sharpened arrays for long-term implant applications. This research contributes to a deeper understanding of the complexities associated with high-channel-count microelectrode array implantation, emphasizing the importance of meticulous assessment and optimization of key parameters for effective integration and minimal tissue disruption. By elucidating the interplay between insertion parameters and tissue response, our study lays a strong foundation for the development of advanced implantable devices with a reduction in reactive gliosis and improved performance in neural recording applications.


Assuntos
Barreira Hematoencefálica , Inflamação , Ratos , Animais , Eletrodos Implantados , Microeletrodos
2.
Am J Physiol Endocrinol Metab ; 300(2): E276-86, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20858756

RESUMO

α-Synuclein has been studied in numerous cell types often associated with secretory processes. In pancreatic ß-cells, α-synuclein might therefore play a similar role by interacting with organelles involved in insulin secretion. We tested for α-synuclein localizing to insulin-secretory granules and characterized its role in glucose-stimulated insulin secretion. Immunohistochemistry and fluorescent sulfonylureas were used to test for α-synuclein localization to insulin granules in ß-cells, immunoprecipitation with Western blot analysis for interaction between α-synuclein and K(ATP) channels, and ELISA assays for the effect of altering α-synuclein expression up or down on insulin secretion in INS1 cells or mouse islets, respectively. Differences in cellular phenotype between α-synuclein knockout and wild-type ß-cells were found by using confocal microscopy to image the fluorescent insulin biosensor Ins-C-emGFP and by using transmission electron microscopy. The results show that anti-α-synuclein antibodies labeled secretory organelles within ß-cells. Anti-α-synuclein antibodies colocalized with K(ATP) channel, anti-insulin, and anti-C-peptide antibodies. α-Synuclein coimmunoprecipitated in complexes with K(ATP) channels. Expression of α-synuclein downregulated insulin secretion at 2.8 mM glucose with little effect following 16.7 mM glucose stimulation. α-Synuclein knockout islets upregulated insulin secretion at 2.8 and 8.4 mM but not 16.7 mM glucose, consistent with the depleted insulin granule density at the ß-cell surface membranes observed in these islets. These findings demonstrate that α-synuclein interacts with K(ATP) channels and insulin-secretory granules and functionally acts as a brake on secretion that glucose stimulation can override. α-Synuclein might play similar roles in diabetes as it does in other degenerative diseases, including Alzheimer's and Parkinson's diseases.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Canais KATP/metabolismo , Vesículas Secretórias/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia , Animais , Citoplasma/metabolismo , DNA/biossíntese , DNA/genética , Regulação para Baixo/fisiologia , Imuno-Histoquímica , Imunoprecipitação , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/citologia , Canais KATP/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vesículas Secretórias/efeitos dos fármacos , alfa-Sinucleína/biossíntese
3.
Biomaterials ; 239: 119842, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32065972

RESUMO

Biological inflammation induced during penetrating cortical injury can disrupt functional neuronal and glial activity within the cortex, resulting in potential recording failure of chronically implanted neural interfaces. Oligodendrocytes provide critical support for neuronal health and function through direct contact with neuronal soma and axons within the cortex. Given their fundamental role to regulate neuronal activity via myelin, coupled with their heightened vulnerability to metabolic brain injury due to high energetic demands, oligodendrocytes are hypothesized as a possible source of biological failure in declining recording performances of intracortical microelectrode devices. To determine the extent of their contribution to neuronal activity and function, a cuprizone-inducible model of oligodendrocyte depletion and demyelination in mice was performed prior to microelectrode implantation. At 5 weeks of cuprizone exposure, mice demonstrated significantly reduced cortical oligodendrocyte density and myelin expression. Mice were then implanted with functional recording microelectrodes in the visual cortex and neuronal activity was evaluated up to 7 weeks alongside continued cuprizone administration. Cuprizone-induced oligodendrocyte loss and demyelination was associated with significantly reduced recording performances at the onset of implantation, which remained relatively stable over time. In contast, recording performances for mice on a normal diet were intially elevated before decreasing over time to the recording level of tcuprizone-treated mice. Further electrophysiological analysis revealed deficits in multi-unit firing rates, frequency-dependent disruptions in neuronal oscillations, and altered laminar communication within the cortex of cuprizone-treated mice. Post-mortem immunohistochemistry revealed robust depletion of oligodendrocytes around implanted microelectrode arrays alongside comparable neuronal densities to control mice, suggesting that oligodendrocyte loss was a possible contributor to chronically impaired device performances. This study highlights potentially significant contributions from the oligodendrocyte lineage population concerning the biological integration and long-term functional performance of neural interfacing technology.


Assuntos
Cuprizona , Doenças Desmielinizantes , Animais , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina , Oligodendroglia
4.
Front Neurosci ; 13: 493, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191216

RESUMO

Improving the long-term performance of neural electrode interfaces requires overcoming severe biological reactions such as neuronal cell death, glial cell activation, and vascular damage in the presence of implanted intracortical devices. Past studies traditionally observe neurons, microglia, astrocytes, and blood-brain barrier (BBB) disruption around inserted microelectrode arrays. However, analysis of these factors alone yields poor correlation between tissue inflammation and device performance. Additionally, these studies often overlook significant biological responses that can occur during acute implantation injury. The current study employs additional histological markers that provide novel information about neglected tissue components-oligodendrocytes and their myelin structures, oligodendrocyte precursor cells, and BBB -associated pericytes-during the foreign body response to inserted devices at 1, 3, 7, and 28 days post-insertion. Our results reveal unique temporal and spatial patterns of neuronal and oligodendrocyte cell loss, axonal and myelin reorganization, glial cell reactivity, and pericyte deficiency both acutely and chronically around implanted devices. Furthermore, probing for immunohistochemical markers that highlight mechanisms of cell death or patterns of proliferation and differentiation have provided new insight into inflammatory tissue dynamics around implanted intracortical electrode arrays.

5.
J Gen Physiol ; 126(3): 285-99, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16129775

RESUMO

Major advances have been made on the inhibition gate and ATP site of the K(ir)6.2 subunit of the K(ATP) channel, but little is known about conformational coupling between the two. ATP site mutations dramatically disrupt ATP-dependent gating without effect on ligand-independent gating, observed as interconversions between active burst and inactive interburst conformations in the absence of ATP. This suggests that linkage between site and gate is conditionally dependent on ATP occupancy. We studied all substitutions at position 334 of the ATP site in K(ir)6.2deltaC26 that express in Xenopus oocytes. All substitutions disrupted ATP-dependent gating by 10-fold or more. Only positive-charged arginine or lysine at 334, however, slowed ligand-independent gating from the burst, and this was in some but not all patches. Moreover, the polycationic peptide protamine reversed the slowed gating from the burst of 334R mutant channels, and speeded the slow gating from the burst of wild-type SUR1/K(ir)6.2 in the absence of ATP. Our results support a two-step ligand-dependent linkage mechanism for K(ir)6.2 channels in which ATP-occupied sites function to electrostatically dissociate COOH-terminal domains from the membrane, then as in all K(ir) channels, free COOH-terminal domains and inner M2 helices transit to a lower energy state for gate closure.


Assuntos
Trifosfato de Adenosina/farmacologia , Ativação do Canal Iônico , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Substituição de Aminoácidos , Animais , Arginina/química , Sítios de Ligação/efeitos dos fármacos , Células Cultivadas , Clonagem Molecular , Relação Dose-Resposta a Droga , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Lisina/química , Potenciais da Membrana/efeitos dos fármacos , Modelos Moleculares , Oócitos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Protaminas/farmacologia , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Xenopus laevis
6.
Diabetes ; 52(3): 767-76, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12606519

RESUMO

With ATP sites on K(ir)6.2 that inhibit activity and ADP sites on SUR1 that antagonize the inhibition, ATP-sensitive potassium channels (K(ATP) channels) are designed as exquisite sensors of adenine nucleotide levels that signal changes in glucose metabolism. If pancreatic K(ATP) channels localize to the insulin secretory granule, they would be well positioned to transduce changes in glucose metabolism into changes in granule transport and exocytosis. Tests for pancreatic K(ATP) channels localized to insulin secretory granules led to the following observations: fluorescent sulfonylureas that bind the pancreatic K(ATP) channel specifically label intracellular punctate structures in cells of the endocrine pancreas. The fluorescent glibenclamides colocalize with Ins-C-GFP, a live-cell fluorescent reporter of insulin granules. Expression of either SUR1-GFP or K(ir)6.2-GFP fusion proteins, but not expression of GFP alone, directs GFP fluorescence to insulin secretory granules. An SUR1 antibody specifically labels insulin granules identified by anti-insulin. Two different K(ir)6.2 antibodies specifically label insulin secretory granules identified by anti-insulin. Immunoelectron microscopy showed K(ir)6.2 antibodies specifically label perimeter membrane regions of the secretory granule. Relatively little or no labeling of other structures, including the plasma membrane, was found. Our results demonstrate that the insulin secretory granule is the major site of K(ATP) channels of the endocrine pancreas.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Trifosfato de Adenosina/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/ultraestrutura , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Canais de Potássio/análise , Vesículas Secretórias/química , Animais , Imunofluorescência , Corantes Fluorescentes , Glibureto/metabolismo , Proteínas de Fluorescência Verde , Secreção de Insulina , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/análise , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptores de Droga , Proteínas Recombinantes de Fusão , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Receptores de Sulfonilureias
7.
J Gen Physiol ; 119(1): 105-16, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11773242

RESUMO

The ATP-sensitive potassium (K(ATP)) channel is named after its characteristic inhibition by intracellular ATP. The inhibition is a centerpiece of how the K(ATP) channel sets electrical signaling to the energy state of the cell. In the beta cell of the endocrine pancreas, for example, ATP inhibition results from high blood glucose levels and turns on electrical activity leading to insulin release. The underlying gating mechanism (ATP inhibition gating) includes ATP stabilization of closed states, but the action of ATP on the open state of the channel is disputed. The original models of ATP inhibition gating proposed that ATP directly binds the open state, whereas recent models indicate a prerequisite transition from the open to a closed state before ATP binds and inhibits activity. We tested these two classes of models by using kinetic analysis of single-channel currents from the cloned mouse pancreatic K(ATP) channel expressed in Xenopus oocytes. In particular, we combined gating models based on fundamental rate law and burst gating kinetic considerations. The results demonstrate open-state ATP dependence as the major mechanism by which ATP speeds exit from the active burst state underlying inhibition of the K(ATP) channel by ATP.


Assuntos
Trifosfato de Adenosina/fisiologia , Ativação do Canal Iônico/fisiologia , Canais de Potássio/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Feminino , Ativação do Canal Iônico/efeitos dos fármacos , Ligantes , Camundongos , Oócitos , Bloqueadores dos Canais de Potássio , Xenopus
8.
Am J Physiol Endocrinol Metab ; 293(1): E293-301, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17405830

RESUMO

Understanding mechanisms by which glibenclamide stimulates insulin release is important, particularly given recent promising treatment by glibenclamide of permanent neonatal diabetic subjects. Antidiabetic sulfonylureas are thought to stimulate insulin secretion solely by inhibiting their high-affinity ATP-sensitive potassium (K(ATP)) channel receptors at the plasma membrane of beta-cells. This normally occurs during glucose stimulation, where ATP inhibition of plasmalemmal K(ATP) channels leads to voltage activation of L-type calcium channels for rapidly switching on and off calcium influx, governing the duration of insulin secretion. However, growing evidence indicates that sulfonylureas, including glibenclamide, have additional K(ATP) channel receptors within beta-cells at insulin granules. We tested nonpermeabilized beta-cells in mouse islets for glibenclamide-stimulated insulin secretion mediated by granule-localized K(ATP) channels by using conditions that bypass glibenclamide action on plasmalemmal K(ATP) channels. High-potassium stimulation evoked a sustained rise in beta-cell calcium level but a transient rise in insulin secretion. With continued high-potassium depolarization, addition of glibenclamide dramatically enhanced insulin secretion without affecting calcium. These findings support the hypothesis that glibenclamide, or an increased ATP/ADP ratio, stimulates insulin secretion in part by binding at granule-localized K(ATP) channels that functionally contribute to sustained second-phase insulin secretion.


Assuntos
Adenosina Trifosfatases/efeitos dos fármacos , Proteínas de Transporte de Cátions/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Compostos de Sulfonilureia/farmacologia , Adenosina Trifosfatases/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Glibureto/administração & dosagem , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Cloreto de Potássio/farmacologia
9.
Biophys J ; 86(4): 2101-12, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15041650

RESUMO

KATP channels assemble from four regulatory SUR1 and four pore-forming Kir6.2 subunits. At the single-channel current level, ATP-dependent gating transitions between the active burst and the inactive interburst conformations underlie inhibition of the KATP channel by intracellular ATP. Previously, we identified a slow gating mutation, T171A in the Kir6.2 subunit, which dramatically reduces rates of burst to interburst transitions in Kir6.2DeltaC26 channels without SUR1 in the absence of ATP. Here, we constructed all possible mutations at position 171 in Kir6.2DeltaC26 channels without SUR1. Only four substitutions, 171A, 171F, 171H, and 171S, gave rise to functional channels, each increasing Ki,ATP for ATP inhibition by >55-fold and slowing gating to the interburst by >35-fold. Moreover, we investigated the role of individual Kir6.2 subunits in the gating by comparing burst to interburst transition rates of channels constructed from different combinations of slow 171A and fast T171 "wild-type" subunits. The relationship between gating transition rate and number of slow subunits is exponential, which excludes independent gating models where any one subunit is sufficient for inhibition gating. Rather, our results support mechanisms where four ATP sites independently can control a single gate formed by the concerted action of all four Kir6.2 subunit inner helices of the KATP channel.


Assuntos
Ativação do Canal Iônico/fisiologia , Oócitos/fisiologia , Canais de Potássio/fisiologia , Subunidades Proteicas/fisiologia , Xenopus laevis/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Sítios de Ligação , Ativação do Canal Iônico/genética , Mutação/genética , Canais de Potássio/genética , Subunidades Proteicas/genética , Xenopus laevis/genética
10.
Traffic ; 3(7): 461-71, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12047554

RESUMO

We combined confocal and live-cell imaging with a novel molecular strategy aimed at revealing mechanisms underlying glucose-regulated insulin vesicle secretion. The 'Ins-C-GFP' reporter monitors secretory peptide targeting, trafficking, and exocytosis without directly tagging the mature secreted peptide. We trapped a green fluorescent protein (GFP) reporter in equimolar quantity within the secretory vesicle by fusing it within the C peptide of proinsulin which only after nascent vesicle sealing and acidification is cleaved from the mature secreted A and B chains of insulin. Ins-C-GFP expression in mouse islets without fail exhibited punctate distribution of green fluorescence by confocal microscopy. Ins-C-GFP colocalized GFP with insulin at vesicle dense cores by immuno-electron microscopy. Glucose stimulation decreased vesicle fluorescence coordinately with enhanced secretion from islets of C-GFP detected by anti-GFP Western blots, and of insulin detected by anti-insulin radioimmunoassay. An insulin secretagogue with a red fluorescent label, glibenclamide BODIPY TR, was applied to islets expressing Ins-C-GFP. The stimulus response was imaged as a rise in red secretagogue leading to marked loss in green granules. Since neuropeptides as well as peptide hormones are processed from propeptides after sealing of secretory granules, vesicle trapping likely is widely applicable for studies on targeting, trafficking, and regulated release of secretory peptides.


Assuntos
Proteínas Luminescentes/metabolismo , Vesículas Secretórias/metabolismo , Animais , Peptídeo C/metabolismo , Exocitose , Glucose/farmacologia , Proteínas de Fluorescência Verde , Técnicas In Vitro , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/ultraestrutura , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Imunoeletrônica , Proteínas Recombinantes de Fusão/metabolismo , Vesículas Secretórias/ultraestrutura , Compostos de Sulfonilureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa