RESUMO
The principal aim of present study was to assess the therapeutic efficacy of bone morphogenetic protein-7 (BMP-7) induced differentiation of bone marrow mesenchymal stem cells (BMSCs) in a rat acute spinal cord injury (SCI) model. BMSCs were isolated from rats, and then divided into a control and a BMP-7 induction groups. The proliferation ability of BMSCs and glial cell markers were determined. Forty Sprague-Dawley (SD) rats were randomly divided into sham, SCI, BMSC, and BMP7 + BMSC groups (n = 10). Among these rats, the recovery of hind limb motor function, the pathological related markers, and motor evoked potentials (MEP) were identified. BMSCs differentiated into neuron-like cells after the introduction of exogenous BMP-7. Interestingly, the expression levels of MAP-2 and Nestin increased, whereas the expression level of GFAP decreased after the treatment with exogenous BMP-7. Furthermore, the Basso, Beattie, and Bresnahan (BBB) score reached 19.33 ± 0.58 in the BMP-7 + BMSC group at day 42. Nissl bodies in the model group were reduced compared to the sham group. After 42 days, in both the BMSC and BMP-7 + BMSC groups, the number of Nissl bodies increased. This is especially so for the number of Nissl bodies in the BMP-7 + BMSC group, which was more than that in the BMSC group. The expression of Tuj-1 and MBP in BMP-7 + BMSC group increased, whereas the expression of GFAP decreased. Moreover, the MEP waveform decreased significantly after surgery. Furthermore, the waveform was wider and the amplitude was higher in BMP-7 + BMSC group than that in BMSC group. BMP-7 promotes BMSC proliferation, induces the differentiation of BMSCsinto neuron-like cells, and inhibits the formation of glial scar. BMP-7 plays a confident role in the recovery of SCI rats.
Assuntos
Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Ratos , Animais , Proteína Morfogenética Óssea 7/genética , Ratos Sprague-Dawley , Diferenciação Celular , Traumatismos da Medula Espinal/terapiaRESUMO
OBJECTIVE: CT scans combined with Mimics software were used to measure femoral offset (FO), rotation center height (RCH) and lower leg length discrepancy (LLD) following total hip arthroplasty (THA), and the relationship between FO, RCH and LLD after THA is discussed. METHODS: Retrospective analysis was performed on 40 patients with unilateral THA who met standard cases from October 2020 to June 2022. There were 21 males and 19 females, 18 patients on the left side and 22 patients on the right side, aged range from 30 to 81 years old, with an average age of (58.90 ±14.13) years old, BMI ranged from 17.3 to 31.5 kg·m-2 with an average of (25.3±3.4) kg·m-2. There were 30 cases of femoral head necrosis (Ficat type â £), 2 cases of hip osteoarthritis (Tönnis type â ¢), 2 cases of developmental hip dislocation combined with end-stage osteoarthritis (Crowe type â ¢), and 6 cases of femoral neck fracture (Garden type â £). Three-dimensional CT reconstruction of pelvis was taken preoperative and postoperative, and three-dimensional reconstruction model was established after processing by Mimics software. FO, RCH and LLD were measured on the model. The criteria for FO reconstruction were as follows:postoperative bilateral FO difference less than 5 mm;the standard for equal length of both lower limbs was as follows:postoperative LLD difference less than 5 mm. RESULTS: Bilateral FO difference was positively correlated with LLD (r=0.744, P<0.001). Chi-square test was performed between the FO reconstructed group and the non-reconstructed eccentricity group:The results showed that the isometric ratio of lower limbs in the FO reconstructed group was significantly higher than that in the FO reconstructed group (χ2=6.320, P=0.012). The bilateral RCH difference was significantly negatively correlated with LLD(r=-0.877, P<0.001). There is a linear relationship between bilateral FO difference and bilateral RCH difference and postoperative LLD, and the linear regression equation is satisfied:postoperative LLD=0.038x-0.099y+0.257(x:postoperative bilateral FO difference, y:postoperative bilateral RCH difference; Unit:cm), F=77.993, R2=0.808, P=0.009. CONCLUSION: After THA, LLD increased with the increase of FO and decreased with the increase of RCH. The effect of lower limb isometric length can be obtained more easily by reconstruction of FO. There is a linear relationship between the bilateral FO difference and the bilateral RCH difference after THA and LLD, and the regression equation can provide a theoretical reference for judging LLD.
Assuntos
Artroplastia de Quadril , Fêmur , Desigualdade de Membros Inferiores , Humanos , Masculino , Feminino , Desigualdade de Membros Inferiores/etiologia , Idoso , Pessoa de Meia-Idade , Artroplastia de Quadril/métodos , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Adulto , Fêmur/cirurgia , Tomografia Computadorizada por Raios X , Rotação , Osteoartrite do Quadril/cirurgia , Osteoartrite do Quadril/etiologiaRESUMO
Vision-based automatic welding guidance technology plays an essential role in robotic welding. A laser vision sensor (LVS) relies on manual intervention to guide the robot when near the workpiece, which reduces the autonomy of the welding robot and productivity. To solve this problem, a robot welding guidance system based on an improved YOLOv5 algorithm with a RealSense Depth Camera was proposed. A coordinate attention (CA) module was embedded in the original YOLOv5 algorithm to improve the accuracy of weld groove detection. The center of the predicted frame of the weld groove in the pixel plane was combined with the depth information acquired by a RealSense depth camera to calculate the actual position of the weld groove. Subsequently, the robot was guided to approach and move over the workpiece. Then, the LVS was used to guide the welding torch installed at the end of the robot to move along the centerline of the weld groove and complete welding tasks. The feasibility of the proposed method was verified by experiments. The maximum error was 2.9 mm in guiding experiments conducted with a distance of 300 mm between the depth camera and the workpiece. The percentage error was within 2% in guidance experiments conducted with distances from 0.3 to 2 m. The system combines the advantages of the depth camera for accurate positioning within a large field and the LVS for high accuracy. Once the position of the weld groove of the workpiece to be welded has been determined, the LVS combined with the robot can easily track the weld groove and realize the welding operation without manual intervention.