Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anim Genet ; 53(6): 897-900, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36086871

RESUMO

Tail type is an important trait that influences meat quality and consumer purchasing attitudes. As a novel genetic marker, the study of genomic copy number variations (CNVs) provides a new research method to study the genetic mechanisms underlying trait formation. In the present paper, we conducted CNV-based association studies for sheep tail type and growth traits in Hulunbuir sheep. A total of 167 CNVs and 288 individuals were analyzed at the marker and individual level, respectively. Association studies of 10 traits were carried out using two mixed linear models. We found that three, one and one CNV loci were significantly associated with tail type, tail length and tail fat weight, respectively, which together contained a total of 52 candidate genes. Out of these genes, five have been documented to be associated with fat metabolism in sheep. Our findings provide a reference for further studies on fat deposition in sheep as well as a theoretical basis for breeding Hulunbuir sheep with the required tail type.


Assuntos
Variações do Número de Cópias de DNA , Ovinos , Cauda , Animais , Variações do Número de Cópias de DNA/genética , Fenótipo , Ovinos/genética , Cruzamento
2.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362120

RESUMO

Total number born (TNB), number of stillborn (NSB), and gestation length (GL) are economically important traits in pig production, and disentangling the molecular mechanisms associated with traits can provide valuable insights into their genetic structure. Genotype imputation can be used as a practical tool to improve the marker density of single-nucleotide polymorphism (SNP) chips based on sequence data, thereby dramatically improving the power of genome-wide association studies (GWAS). In this study, we applied Beagle software to impute the 50 K chip data to the whole-genome sequencing (WGS) data with average imputation accuracy (R2) of 0.876. The target pigs, 2655 Large White pigs introduced from Canadian and French lines, were genotyped by a GeneSeek Porcine 50K chip. The 30 Large White reference pigs were the key ancestral individuals sequenced by whole-genome resequencing. To avoid population stratification, we identified genetic variants associated with reproductive traits by performing within-population GWAS and cross-population meta-analyses with data before and after imputation. Finally, several genes were detected and regarded as potential candidate genes for each of the traits: for the TNB trait: NOTCH2, KLF3, PLXDC2, NDUFV1, TLR10, CDC14A, EPC2, ORC4, ACVR2A, and GSC; for the NSB trait: NUB1, TGFBR3, ZDHHC14, FGF14, BAIAP2L1, EVI5, TAF1B, and BCAR3; for the GL trait: PPP2R2B, AMBP, MALRD1, HOXA11, and BICC1. In conclusion, expanding the size of the reference population and finding an optimal imputation strategy to ensure that more loci are obtained for GWAS under high imputation accuracy will contribute to the identification of causal mutations in pig breeding.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Canadá , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Suínos/genética
3.
Front Genet ; 13: 1078696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506319

RESUMO

Growth and fat deposition are complex traits, which can affect economical income in the pig industry. Due to the intensive artificial selection, a significant genetic improvement has been observed for growth and fat deposition in pigs. Here, we first investigated genomic-wide association studies (GWAS) and population genomics (e.g., selection signature) to explore the genetic basis of such complex traits in two Large White pig lines (n = 3,727) with the GeneSeek GGP Porcine HD array (n = 50,915 SNPs). Ten genetic variants were identified to be associated with growth and fatness traits in two Large White pig lines from different genetic backgrounds by performing both within-population GWAS and cross-population GWAS analyses. These ten significant loci represented eight candidate genes, i.e., NRG4, BATF3, IRS2, ANO1, ANO9, RNF152, KCNQ5, and EYA2. One of them, ANO1 gene was simultaneously identified for both two lines in BF100 trait. Compared to single-population GWAS, cross-population GWAS was less effective for identifying SNPs with population-specific effect, but more powerful for detecting SNPs with population-shared effects. We further detected genomic regions specifically selected in each of two populations, but did not observe a significant enrichment for the heritability of growth and backfat traits in such regions. In summary, the candidate genes will provide an insight into the understanding of the genetic architecture of growth-related traits and backfat thickness, and may have a potential use in the genomic breeding programs in pigs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa