RESUMO
A new surface-enhanced Raman spectroscopy (SERS) biosensor of Graphene@Ag-MLF composite structure has been fabricated by loading AgNPs on graphene films. The response of the biosensor is based on plasmonic sensing. The results showed that the enhancement factor of three different spores reached 107 based on the Graphene@Ag-MLF substrate. In addition, the SERS performance was stable, with good reproducibility (RSD<3%). Multivariate statistical analysis and chemometrics were used to distinguish different spores. The accumulated variance contribution rate was up to 96.35% for the top three PCs, while HCA results revealed that the spectra were differentiated completely. Based on optimal principal components, chemometrics of KNN and LS-SVM were applied to construct a model for rapid qualitative identification of different spores, of which the prediction set and training set of LS-SVM achieved 100%. Finally, based on the Graphene@Ag-MLF substrate, the LOD of three different spores was lower than 102 CFU/mL. Hence, this novel Graphene@Ag-MLF SERS substrate sensor was rapid, sensitive, and stable in detecting spores, providing strong technical support for the application of SERS technology in food safety.
Assuntos
Grafite , Esporos Bacterianos , Reprodutibilidade dos Testes , Análise Espectral Raman , QuimiometriaRESUMO
The outbreak of the coronavirus disease 2019 (COVID-19) promoted online teaching on an unprecedented scale, raising researchers' attention to the importance of faculty's acceptance of this urgent teaching shift. This study aimed to explore the influence of organizational factors on faculty's acceptance of online teaching in terms of behavioral intention and perceived usefulness. A multilevel structural equation model was employed to analyze data on 209,058 faculty in 858 higher education institutions based on a nationwide survey conducted in mainland China. The results showed that three key organizational factors, namely strategic planning, leadership, and teaching quality monitoring, impacted faculty's acceptance of online teaching, although in different ways. Strategic planning had a direct impact on perceived usefulness, while leadership had a direct impact on behavioral intentions, and teaching quality monitoring had a direct impact on both perceived usefulness and behavioral intentions. In addition, an indirect effect was found between strategic planning and faculty's behavioral intentions through the mediation of the perceived usefulness of online teaching. The findings of this study have practical implications for college administrators and policymakers, which should effectively implement and promote online teaching and learning, and consider key organizational factors to increase faculty acceptance.
RESUMO
Emotion is widely agreed to have two dimensions, valence and arousal. Few studies have explored the effect of emotion on conflict adaptation by considering both of these, which could have dissociate influence. The present study aimed to fill the gap as to whether emotional valence and arousal would exert dissociable influence on conflict adaptation. In the experiments, we included positive, neutral, and negative conditions, with comparable arousal between positive and negative conditions. Both positive and negative conditions have higher arousal than neutral ones. In Experiment 1, by using a two-colour-word Flanker task, we found that conflict adaptation was enhanced in both positive and negative contexts compared to a neutral context. Furthermore, this effect still existed when controlling stimulus-response repetitions in Experiment 2, which used a four-colour-word Flanker task. The findings suggest emotional arousal enhances conflict adaptation, regardless of emotional valence. Thus, future studies should consider emotional arousal when studying the effect of emotion on conflict adaptation. Moreover, the unique role of the emotional context in conflict-driven cognitive control is emphasised.
Assuntos
Nível de Alerta , Cognição , Conflito Psicológico , Ajustamento Emocional , Emoções , Adulto , Feminino , Humanos , Masculino , Tempo de Reação , Adulto JovemRESUMO
The growth of Pseudomonas of pallet-packaged seasoned prepared chicken products under selected storage temperatures (5°°C, 10°°C, 15°°C, 20°°C and 25°°C) has been studied in this paper. The modified Gompertz, Baranyi and Huang models were used for data fitting. Statistical criteria such as residual sum of squares, mean square error, Akaike's information criterion, Pseudo-R(2) were used to evaluate model performance. Results showed that RSS (Residual sum of squares) index contribution rate was more than 90% of the variability, which could be explained by the first principal components analyzed by the principal component analysis (PCA). The index values reported in Sichuan-style chicken skewers and chicken flesh and bones were about 94.85% and 93.345% respectively, and both the rate were better than the standard (85%). Therefore, RSS can be used as the main evaluating index to analyze and compare the difference of those three models. With the smallest average values of RSS and the biggest pseudo-R2 at most temperatures, the Baranyi model was more suitable to fit the data of Pseudomonas obtained from the two prepared chicken products than Gompertz model and Huang model.
Assuntos
Galinhas/microbiologia , Carne/microbiologia , Análise de Componente Principal/métodos , Pseudomonas/química , Pseudomonas/crescimento & desenvolvimento , Animais , Contaminação de Alimentos/análise , Armazenamento de Alimentos , Cinética , Pseudomonas/isolamento & purificação , Estações do Ano , TemperaturaRESUMO
In order to explore the influence of wood types on formation of polycyclic aromatic hydrocarbons (PAHs) in traditional smoked and grilled meat products, the effect of lignin in woods on formation of PAHs was investigated in meat model systems. The results showed that PAHs formation was much dependent on the heating conditions. The addition of lignin led to significantly increased PAHs, which being connected with lignin structure. In comparison, the formation of PAHs was more facilitated by lignin with G structure than that with G/S structure. However, further study of adding lignin precursors demonstrated that lignin precursors with S structure were more favorable to the formation of PAHs than those with G structure. It was proposed that the relative content and activity of G/S structure of lignin in wood played a significant role in the formation of PAHs, which might provide theoretical reference for inhibition of PAHs fundamentally.
Assuntos
Produtos da Carne , Hidrocarbonetos Policíclicos Aromáticos , Produtos da Carne/análise , Lignina , Culinária/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Fumaça , Carne/análiseRESUMO
The Maillard reaction occurs during the frying of batter-coated meat products, resulting in the production of advanced glycosylation products that are harmful to human health. This study investigated the effects of frying temperature (140, 150, 160, 170 and 180 â) and time (80, 100, 120, 140 and 160 s) on the quality, advanced glycation end product (AGE) level and the relationship between these parameters in batter-coated meat products were investigated. The results showed that with an increase in frying temperature and time, the moisture content of the batter-coated meat products gradually decreased, the thiobarbituric Acid Reactive Substance (TBARS) values and oil content increased to 0.37 and 21.7 %, respectively, and then decreased, and CML and CEL content increased to 7.30 and 4.86 mg/g, respectively. Correlation analysis showed that the moisture content and absorbance at 420 nm, as well as TBARS values, were highly correlated with the oil content in batter-coated meat products. Additionally, the absorbance at 420 nm and TBARS levels were significantly correlated with AGE levels. Moreover, the AGE content in batter-coated meat products was less variable at lower frying temperatures or shorter frying times, and the influence of temperature on AGE formation was greater than that of time. Overall, these findings may help to better control the cooking conditions of batter-coated meat products based on AGE profiles.
Assuntos
Reação de Maillard , Produtos da Carne , Humanos , Produtos Finais de Glicação Avançada/análise , Produtos da Carne/análise , Substâncias Reativas com Ácido Tiobarbitúrico , LipídeosRESUMO
BACKGROUND: Bacterial spores are the main potential hazard in medium- and high-temperature sterilized meat products, and their germination and subsequent reproduction and metabolism can lead to food spoilage. Moreover, the spores of some species pose a health and safety threat to consumers. The rapid detection, prevention, and control of bacterial spores has always been a scientific problem and a major challenge for the medium and high-temperature meat industry. Early and sensitive identification of spores in meat products is a decisive factor in contributing to consumer health and safety. RESULTS: In this study, we developed a novel and stable Ag@AuNP array substrate by using a two-step synthesis approach and a liquid-interface self-assembly method that can directly detect bacterial spores in actual meat product samples without the need for additional in vitro bacterial culture. The results indicate that the Ag@AuNP array substrate exhibits high reproducibility and Raman enhancement effects (1.35 × 105). The differentiation in the Surface enhanced Raman scattering (SERS) spectra of five bacterial spores primarily arises from proteins in the spore coat and inner membrane, peptidoglycan of cortex, and Ca2âº-DPA within the spore core. The correct recognition rate of linear discriminant analysis for spores in the meat product matrix can reach 100 %. The average recovery accuracy of the SERS quantitative model was at around 101.77 %, and the limit of detection can reach below 10 CFU/mL. SIGNIFICANCE: It provides a promising technological strategy for the characteristic substance analysis and timely monitoring of spores in meat products.
Assuntos
Produtos da Carne , Prata , Análise Espectral Raman , Esporos Bacterianos , Análise Espectral Raman/métodos , Prata/química , Esporos Bacterianos/isolamento & purificação , Esporos Bacterianos/química , Produtos da Carne/microbiologia , Produtos da Carne/análise , Nanopartículas Metálicas/química , Contaminação de Alimentos/análise , Propriedades de Superfície , Microbiologia de Alimentos/métodos , CulináriaRESUMO
A study on the inactivation and germination mechanism of spores is very important in the application of spores, as such high-purity spores are the basis of related research. However, spores and vegetative cells of bacteria often coexist, and it is difficult to separate them. In this study, a magnetic flow device for the purification of spores in the culture medium system was developed based on a "stepped" structure with a magnetic force that could absorb vegetative cells with magnetic nanoparticles. The operation process was as follows: first, vancomycin functionalized nanoparticles were used to prepare Van-Fe3O4 NPs, which were then combined with vegetative cells to form a magnetic conjugate. Subsequently, the magnetic conjugate (vegetative cells) flowed through the "stepped" magnetic flow device and was adsorbed. Meanwhile, the spores moved through the channel and were collected. The achieved purity of the collected spores was more than 95%. Further, the number of the obtained spores was quickly quantified using Raman spectroscopy. The entire purification and quantitative process can be completed within 30 min and the limit of detection was 5 CFU mL-1. This study showed outstanding spore purification ability and provided a new method for purification and rapid quantitative detection of spores.
Assuntos
Esporos Bacterianos , Esporos , Esporos Bacterianos/fisiologia , Bactérias , Meios de Cultura , Fenômenos MagnéticosRESUMO
Probiotic Bacillus strains can solve the problems of single flavor and long fermentation time of fermented products caused by the lack of certain functional genes and insufficient metabolism ability of fermenter strains (Lactobacillus and Bifidobacterium) at the present stage. There is a lack of systematic evaluation and review of probiotic Bacillus as food fermentation agents. In this paper, it is observed that probiotic Bacillus strains are involved to varying degrees in liquid-state, semi-solid state, and solid-state fermentation and are widely present in solid-state fermented foods. Probiotic Bacillus strains not only produce abundant proteases and lipases, but also effective antifungal lipopeptides and extracellular polymers, thus enhancing the flavor, nutritional value and safety of fermented foods. Bacillus with probiotic qualities is an underutilized group of probiotic food fermentation agents, which give a potential for the development of fermentation technology in the food business and the integration of ancient traditional fermentation techniques.
RESUMO
Rapid isolation and identification of lactic acid bacteria and yeasts during fermentation is of great significance for quality control and regulation of fermented foods. In this study, we prepared a multi-channel magnetic flow device for rapid separation and purification of lactic acid bacteria and yeast, and based on SERS spectrum, we made rapid qualitative and quantitative analysis of Lactobacillus plantarum, Lactococcus lactis and Saccharomyces cerevisiae. The results showed that the synthesized Synthesized Fe3O4-Van antibiotic magnetic beads are paramagnetic; Fe3O4-Van antibiotic magnetic beads achieved capture efficiencies of more than 98.5 % for both L. plantarum and L. lactis at 102-104 CFU/mL, respectively. Separation and purification efficiency of single S. cerevisiae, L. plantarum and L. lactis by multi-channel magnetic flow device all reached more than 98 % with good isolation and purification results. The SERS spectra of the three microorganisms were classified and analyzed using linear discriminant analysis (LDA), and the accuracy of the established LDA model was 100 %, which completely differentiated the SERS spectra of the three microorganisms,and realized the qualitative identification of L. plantarum, L. lactis, and S. cerevisiae, and finally, quantitative model was established with the logarithmic values (lg C) of different concentrations of L. plantarum, L. lactis, and S. cerevisiae as the horizontal coordinates, and the Raman intensities at their strongest characteristic peaks of 512 cm-1, 1669 cm-1, and 1125 cm-1, respectively, were used as vertical coordinates to establish a quantitative model, with the lowest detection limit of 10 CFU/mL, and the digital quantification of lactic acid bacteria and yeast were achieved. It provided an effective means for real-time monitoring and tracking of the dynamics of lactic acid bacteria and yeast in the fermentation process and the quality control of fermented foods.
RESUMO
Foodborne spores are ubiquitous with extremely strong resistance, and pose a serious threat to food safety and human health. Therefore, rapid, sensitive, and selective detection of spores are crucial. In this study, a fluorescent probe was developed based on lanthanide ion (Eu3+)-labeled nano-silver-modified graphene oxide (GO-AgNPs-Eu3+) for the detection of 2,6-dipicolinic acid (DPA), a biomarker unique to spores, to allow quantitative spores detection. The GO-AgNPs-Eu3+ nano-fluorescent probe was loaded onto a polyvinylidene fluoride microfiltration membrane, and a smartphone-assisted portable GO-AgNPs-Eu3+ nanoparticles-based paper visual sensor was designed for rapid on-site quantitative and real-time online detection of spores. The results indicated that the developed probe achieved equilibrium binding with DPA within 5 min, and enhanced fluorescence emission through antenna effect. The fluorescence detection presented a good linear relationship in the DPA concentration range of 0-45 µM, with a DPA detection limit of 4.62 nM and spore detection limit of 104 cfu/mL. The developed sensor showed a change in fluorescence from blue to red with increasing DPA concentration, and this color change was quantitatively detected through smartphone RGB variations, with a detection limit of 13.1 µM for DPA and 6.3 cfu/mL for Bacillus subtilis spores. Subsequently, the sensitivity and selectivity of the developed sensor were verified using actual milk and water samples spiked with B. subtilis spores. The results of this study provided objective technological support for rapid detection of spores, which is important for reducing the occurrence of foodborne diseases and improving food safety.
RESUMO
Chinese traditional fermented sour meat has a unique flavor and nutritional value. The antioxidant activity of sour meat peptides is related to their molecular weights, amino acid compositions, and structural characteristics. Therefore, this study explores the relationships between them. The results indicate that sour meat peptides with molecular weights <1 kDa exhibit significant antioxidant properties both in vitro and in vivo. The smaller the molecular weights, the higher the content of typical amino acids with antioxidant activity (p <0.05), and the characteristic peaks of ultraviolet absorption decrease. The absorption peak at 284.5 nm blue-shifted, and the polarity of the microenvironment increased. The peak intensity and peak area of the Raman characteristic peaks of tyrosine residues and aliphatic amino acids were enhanced. In the secondary structure, there is a high content of ß-turns and a low content of α-helix, which are closely related to the enhancement of antioxidant activity.
Assuntos
Antioxidantes , Fermentação , Peptídeos , Antioxidantes/química , Peptídeos/química , Animais , Produtos da Carne/análise , Peso Molecular , Aminoácidos/química , Estrutura Secundária de Proteína , Camundongos , Alimentos Fermentados/análiseRESUMO
Chitosan, as a kind of naturally occurring green and degradable material for the preservation of perishable foods, was investigated in this study with the objective of enhancing its preservation performances. Herein, lignin was modified using the solvent fractionation method (modified lignin, ML, including ML1-ML3), while natural clinoptilolite zeolite was modified using the alkali modification method (modified clinoptilolite zeolite, MCZ, including MCZ1-MCZ5). After optimizing the conditions, it was discovered that incorporating both ML3 and MCZ3 into pure chitosan-based membranes might be conducive to fabricate chitosan-based composite membranes for the preservation of perishable foods. As-prepared composite membranes possessed better visible light transmittance, antioxidant activity, and carbon dioxide/oxygen selectivity, resulting in improved preservation effects on the model perishable foods such as bananas, cherry tomatoes, and cheeses. These findings might indicate promising applications for chitosan-based composite membranes with modified lignin and zeolite in the field of eco-friendly degradable materials for the preservation of perishable foods.
Assuntos
Quitosana , Conservação de Alimentos , Lignina , Zeolitas , Quitosana/química , Zeolitas/química , Lignina/química , Conservação de Alimentos/métodos , Conservação de Alimentos/instrumentação , Química Verde , Queijo/análise , Antioxidantes/química , Solanum lycopersicum/química , Embalagem de Alimentos/instrumentaçãoRESUMO
Bacteriostats, as chemical substances that inhibit bacterial growth, are widely used in the sterilization process; however, their effects on spindle spores are unclear. In this study, the effects of bacteriostats, including nine commonly used food additives and four detergents, on the growth of Clostridium perfringens spores were investigated. The results showed that 0.07‱ ethylenediaminetetraacetate had a good inhibitory effect on C. perfringens spore growth, and the spore turbidity decreased by 4.8% after incubation for 60 min. Furthermore, 0.3‱ tea polyphenols, 0.8‱ D-isoascorbic acid, and 0.75‱ potassium sorbate promoted leakage of contents during spore germination. Among the four detergents, 5‱ glutaraldehyde solution presented the best inhibitory effect on the growth of C. perfringens spores, and the spore turbidity decreased by 5.6% after incubation for 60 min. Further analysis of the inactivation mechanism of spores by the bacteriostats was performed by comparing the leakage of UV-absorbing substances during germination. The results revealed that bacteriostats could not directly kill the spores, but could inactivate them by inhibiting germination or damaging the spore structure during germination, thus preventing the formation of bacterial vegetative bodies. These findings provide important information and reference for the mechanism underlying the effects of different bacteriostatic agents on spore growth.
RESUMO
Clostridium perfringens can form metabolically dormant spores that can survive in meat preservation processes and cause food spoilage and human disease upon germination and outgrowth. The characteristics of spores in food products are closely related to the sporulation environment. To control or inactivate C. perfringens spores in food industry, the effects of sporulation conditions on the spores characteristics should be examined. This study aimed to investigate the effects of temperature (T), pH, and water activity (aw) on the growth, germination, and wet-heat resistance of C. perfringens C1 spores isolated from food product. The results showed that C. perfringens C1 spores produced at T = 37 °C, pH = 8, and aw = 0.997 had the highest sporulation rate and germination efficiency and lowest wet-heat resistance. A further increase in pH and sporulation temperature reduced the spore counts and germination efficiency, but enhanced spores' wet-heat resistance. By using air-drying method and Raman spectroscopy analysis, the water content, composition, and levels of calcium dipicolinic acid, proteins, and nucleic acids in spores produced under different sporulation conditions were determined. The results obtained revealed that sporulation conditions should be carefully considered during food production and processing, thus providing a novel insight into prevention and control of spores in food industry.
Assuntos
Clostridium perfringens , Esporos Bacterianos , Humanos , Contagem de Colônia Microbiana , Temperatura , Temperatura Alta , Água/análiseRESUMO
The emulsifying capacity of bovine bone protein extracted using high-pressure hot water (HBBP) has been determined to be good. Nevertheless, given that HBBP is a blend of peptides with a broad range of molecular weights, the distinction in emulsifying capacity between polypeptide components with high and low molecular weights is unclear. Therefore, in this study, HBBP was separated into three molecular weight components of 10-30 kDa (HBBP 1), 5-10 kDa (HBBP 2), and <5 kDa (HBBP 3) via ultrafiltration, and the differences in their structures and emulsifying properties were investigated. The polypeptide with the highest molecular weight displayed the lowest endogenous fluorescence intensity, the least solubility in an aqueous solution, and the highest surface hydrophobicity index. Analysis using laser confocal Raman spectroscopy showed that with an increase in polypeptide molecular weight, the α-helix and ß-sheet contents in the secondary structure of the polypeptide molecule increased significantly. Particle size, rheological characteristics, and laser confocal microscopy were used to characterize the emulsion made from peptides of various molecular weights. High-molecular-weight peptides were able to provide a more robust spatial repulsion and thicker interfacial coating in the emulsion, which would make the emulsion more stable. The above results showed that the high-molecular-weight polypeptide in HBBP effectively improved the emulsion stability when forming an emulsion. This study increased the rate at which bovine bone was utilized and provided a theoretical foundation for the use of bovine bone protein as an emulsifier in the food sector.
RESUMO
The use of information and communication technologies (ICT) is increasingly becoming prevalent among students, both at home and school. While inconsistent results were found for student ICT use and reading literacy, this study attempted to explain these ambiguous links with the moderation of ICT use intensity and mediation of metacognition. Three moderated mediation models for each type of ICT use (at home for entertainment activities and for schoolwork, as well as at school) were analyzed using a Hong Kong sample taken from the Programme for International Student Assessment (PISA) 2018 data pertaining to 5180 15-year-old students from 152 schools. A dynamic effect pattern was found for the links of all ICT use types and reading literacy with the increasing intensity of ICT use, which begins with a positive effect followed by a decrease to less positive, then turns to fluctuating negative and finally ends up with a stable negative effect. But the dominant effect varies across ICT use intensity, which result in different overall effects of three ICT use types. In addition, all three aspects of metacognition showed a profound negative mediation on links of intensive and excessive ICT use with reading literacy, and a less positive mediation for limited ICT use. The metacognition of assessing credibility showed a more important role than summarizing, which was followed by understanding and remembering. In light of the findings, the study recommended that more metacognitive scaffolds should be developed for students with intensive or excessive ICT use, so as to alleviate the side effects of ICT use on their reading literacy.
RESUMO
This study analyzed the changes of odor and taste in Daokou braised chicken during processing by GC-MS, GC-IMS, e-nose and e-tongue. The 75 and 55 volatile compounds identified in Daokou braised chicken by GC-MS and GC-IMS, respectively, included hydrocarbons, aldehydes, alcohols, terpenes, ketones, heterocyclics, esters, acids and phenols; among them, aldehydes, alcohols and ketones were the most abundant. The number and proportion of volatile compounds in Daokou braised chicken changed significantly (p < 0.05) in the process. The proportion of volatile compounds with animal fatty odor, such as aldehydes and alcohols, decreased, while that of esters, ketones and terpenes from spices with fruity fragrance increased, especially in the braising stage. An e-nose showed that the odor intensities of sulfur-containing and nitrogen oxide compounds were higher (p < 0.05) after the braising stage, but weakened after 2 h braising. An e-tongue showed that saltiness and richness increased significantly (p < 0.05) after braising. The results of these four techniques showed that braising promoted the release of flavor compounds, and was beneficial to salt penetration and umami release. However, long braising could lead to weakened flavor intensity and the introduction of bitterness and astringency. This study also found that GC-IMS and e-nose were more sensitive to trace compounds such as sulfur-containing and nitrogen oxide compounds, esters, acids and phenolics in Daokou braised chicken than GC-MS. The use of multiple technologies could provide more comprehensive flavor profiles for Daokou braised chicken during processing. This study provides insights into the control of flavor of Daokou braised chicken, and may be of practical relevance for the poultry industry.
RESUMO
In this study, a power-free biosensor was presented to detect Salmonella typhimurium on a microfluidic chip using a slide multivalve for channel selection and a disposable syringe for fluidic transfer. First, bacterial sample with immunomagnetic nanoparticles (IMNPs) and glucose oxidase (GOx) modified immune polystyrene nanoparticles (IPNPs), washing buffer, glucose, and peroxide test strip (PTS) were preloaded in their respective chambers at the periphery of chip. After the slide multivalve was selected to connect sample chamber with common separation chamber, which was connected with a syringe, the mixture of Salmonella, IMNPs and IPNPs was back and forth moved through 3D Tesla-structure micromixer using the syringe, resulting in the formation of IMNP-Salmonella-IPNP complexes, which were captured in the separation chamber using a magnet. Then, two washing chambers were selectively connected respectively to remove sample background and excessive IPNPs, and glucose chamber was connected, allowing the GOx to catalyze glucose to produce hydrogen peroxide in the separation chamber. Finally, PTS chamber was connected and the catalysate was transferred from the separation chamber to the PTS chamber, leading to the color change of PTS, followed by using smartphone App to collect and analyze the image of PTS for bacterial determination. The simple biosensor enabled simple detection of Salmonella as few as 130 CFU/mL within 60 min and is promising for practical applications in the resource-limited regions due to its low cost, simple operation, and small size.
Assuntos
Técnicas Biossensoriais , Microfluídica , Microbiologia de Alimentos , Glucose , Salmonella typhimurium , SeringasRESUMO
In this study, we developed a novel and sensitive AgNPs self-assembled solid-phase (AgNPs-SASP) SERS substrate platform using seed-mediated and liquid interface self-assembly methods and applied the platform for the detection of three bacterial spores. Multivariate statistical analysis (HCA and LDA) were employed for identification and categorization of the obtained data. The results illustrated that AgNPs-SASP exhibited high reproducibility and Raman enhancement effect (1.43 × 104). The Raman shift bands of the three bacterial spores ranged from 400 to 1800 cm-1 demonstrating the difference in reigon and intensity. And the intensities of their Ca2+-DPA Raman bands are significantly different. HCA results revealed that the spectra for the three bacterial spores were statistically different while LDA completely differentiated the spectra for the three bacterial spores with 100 % sensitivity and specificity. Overall, the novel SERS platform based on AgNPs-SASP provides an effective tool for food safety risk control and detection.