RESUMO
Porcine deltacoronavirus (PDCoV), an enteropathogenic coronavirus, causes severe watery diarrhoea, dehydration and high mortality in piglets, which has the potential for cross-species transmission in recent years. Growth factor receptor-bound protein 2 (Grb2) is a bridging protein that can couple cell surface receptors with intracellular signal transduction events. Here, we investigated the reciprocal regulation between Grb2 and PDCoV. It is found that Grb2 regulates PDCoV infection and promotes IFN-ß production through activating Raf/MEK/ERK/STAT3 pathway signalling in PDCoV-infected swine testis cells to suppress viral replication. PDCoV N is capable of interacting with Grb2. The proline-rich motifs in the N- or C-terminal region of PDCoV N were critical for the interaction between PDCoV-N and Grb2. Except for Deltacoronavirus PDCoV N, the Alphacoronavirus PEDV N protein could interact with Grb2 and affect the regulation of PEDV replication, while the N protein of Betacoronavirus PHEV and Gammacoronavirus AIBV could not interact with Grb2. PDCoV N promotes Grb2 degradation by K48- and K63-linked ubiquitin-proteasome pathways. Overexpression of PDCoV N impaired the Grb2-mediated activated effect on the Raf/MEK/ERK/STAT3 signal pathway. Thus, our study reveals a novel mechanism of how host protein Grb2 protein regulates viral replication and how PDCoV N escaped natural immunity by interacting with Grb2.
Assuntos
Proteína Adaptadora GRB2 , Proteínas do Nucleocapsídeo , Replicação Viral , Animais , Suínos , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/genética , Proteínas do Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/genética , Doenças dos Suínos/virologia , Doenças dos Suínos/metabolismo , Deltacoronavirus/metabolismo , Deltacoronavirus/genética , Sistema de Sinalização das MAP Quinases , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Humanos , Transdução de Sinais , Linhagem Celular , Quinases raf/metabolismo , Quinases raf/genética , Células HEK293RESUMO
The rational design of novel catalysts with high activity and selectivity for carbon dioxide reduction reaction (CO2 RR) is highly desired. In this work, we have extensive investigations on the properties of two-dimensional transition metal borides (MBenes) to achieve efficient CO2 capture and reduction through first-principles calculations. The results show that all the investigated M3 B4 -type MBene exhibit remarkable CO2 capture and activation abilities, which proved to be derived from the lone pair of electrons on the MBene surface. Then, we emphasize that the investigated MBenes can further selectively reduce activated CO2 to CH4 . Moreover, a new linear scaling relationship of the adsorption energies of potential-determining intermediates (*OCH2 O and *HOCH2 O) versus ΔG(*OCHO) has been established, where the CO2 RR limiting potentials on MBenes are determined by the different fitting slopes of ΔG(*OCH2 O) and ΔG(*HOCHO), allowing significantly lower limiting potentials to be achieved compared to transition metals. Especially, two promising CO2 RR catalysts (Mo3 B4 and Cr3 B4 MBene) exist quite low limiting potentials of -0.48â V and -0.66â V, as well as competitive selectivity concerning hydrogen evolution reactions have been identified. Our research results make future advances in CO2 capture by MBenes easier and exploit the applications of Mo3 B4 and Cr3 B4 MBenes as novel CO2 RR catalysts.
RESUMO
Previous studies have yielded inconsistent results regarding the relationship between obesity and bone mineral density (BMD). The aim of this study was to determine the influence of body composition on BMD and the serum sclerostin level in overweight and obese adults. The study had a cross-sectional design and included 90 men and 118 women with a body mass index ≥25. Fat mass, lean mass, and spinal and pelvic BMD were measured using dual-emission X-ray absorptiometry. Subcutaneous fat, visceral fat, and lean mass were measured between L2 and L3 by 16-slice spiral computed tomography. The serum sclerostin level was determined by enzyme-linked immunosorbent assay. Pearson analysis showed that fat mass and appendicular lean mass were positively correlated with spinal BMD in both sexes. A positive association of both fat mass and lean mass with pelvic BMD, which was stronger in women, was also found. Partial correlation analysis showed the positive association between fat mass and BMD was significantly attenuated but the positive association between lean mass and pelvic BMD remained after adjustment for age and body weight. A negative correlation was observed between visceral fat and spinal and pelvic BMD only in women, and the positive association between lean mass with pelvic BMD was more obvious in women than in men, indicating body composition seemed to have a greater impact on the BMD in women. The serum sclerostin level was positively associated with BMD but not with body composition. These findings suggest that the correlation between body composition and BMD is influenced by sex and skeletal site.
Assuntos
Absorciometria de Fóton , Composição Corporal , Densidade Óssea , Obesidade , Sobrepeso , Humanos , Masculino , Feminino , Obesidade/fisiopatologia , Pessoa de Meia-Idade , Estudos Transversais , Adulto , Sobrepeso/fisiopatologia , Fatores Sexuais , Proteínas Adaptadoras de Transdução de Sinal , Marcadores Genéticos , Proteínas Morfogenéticas Ósseas/sangue , China , Índice de Massa Corporal , Ossos Pélvicos/diagnóstico por imagem , Idoso , População do Leste AsiáticoRESUMO
BACKGROUND: Acute kidney disease (AKD) affects more than half of critically ill elderly patients with acute kidney injury (AKI), which leads to worse short-term outcomes. OBJECTIVE: We aimed to establish 2 machine learning models to predict the risk and prognosis of AKD in the elderly and to deploy the models as online apps. METHODS: Data on elderly patients with AKI (n=3542) and AKD (n=2661) from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database were used to develop 2 models for predicting the AKD risk and in-hospital mortality, respectively. Data collected from Xiangya Hospital of Central South University were for external validation. A bootstrap method was used for internal validation to obtain relatively stable results. We extracted the indicators within 24 hours of the first diagnosis of AKI and the fluctuation range of some indicators, namely delta (day 3 after AKI minus day 1), as features. Six machine learning algorithms were used for modeling; the area under the receiver operating characteristic curve (AUROC), decision curve analysis, and calibration curve for evaluating; Shapley additive explanation (SHAP) analysis for visually interpreting; and the Heroku platform for deploying the best-performing models as web-based apps. RESULTS: For the model of predicting the risk of AKD in elderly patients with AKI during hospitalization, the Light Gradient Boosting Machine (LightGBM) showed the best overall performance in the training (AUROC=0.844, 95% CI 0.831-0.857), internal validation (AUROC=0.853, 95% CI 0.841-0.865), and external (AUROC=0.755, 95% CI 0.699-0.811) cohorts. In addition, LightGBM performed well for the AKD prognostic prediction in the training (AUROC=0.861, 95% CI 0.843-0.878), internal validation (AUROC=0.868, 95% CI 0.851-0.885), and external (AUROC=0.746, 95% CI 0.673-0.820) cohorts. The models deployed as online prediction apps allowed users to predict and provide feedback to submit new data for model iteration. In the importance ranking and correlation visualization of the model's top 10 influencing factors conducted based on the SHAP value, partial dependence plots revealed the optimal cutoff of some interventionable indicators. The top 5 factors predicting the risk of AKD were creatinine on day 3, sepsis, delta blood urea nitrogen (BUN), diastolic blood pressure (DBP), and heart rate, while the top 5 factors determining in-hospital mortality were age, BUN on day 1, vasopressor use, BUN on day 3, and partial pressure of carbon dioxide (PaCO2). CONCLUSIONS: We developed and validated 2 online apps for predicting the risk of AKD and its prognostic mortality in elderly patients, respectively. The top 10 factors that influenced the AKD risk and mortality during hospitalization were identified and explained visually, which might provide useful applications for intelligent management and suggestions for future prospective research.
Assuntos
Injúria Renal Aguda , Estado Terminal , Hospitalização , Internet , Aprendizado de Máquina , Humanos , Idoso , Estado Terminal/mortalidade , Prognóstico , Injúria Renal Aguda/mortalidade , Injúria Renal Aguda/diagnóstico , Feminino , Masculino , Hospitalização/estatística & dados numéricos , Idoso de 80 Anos ou mais , Mortalidade Hospitalar , Medição de Risco/métodosRESUMO
OBJECTIVE: We aimed to investigate the relationship between admission hypothermia and outcomes among very preterm infants (VPIs) in neonatal intensive care units (NICUs) in China. We also investigated the frequency of hypothermia in VPIs in China and the variation in hypothermia across Chinese Neonatal Network (CHNN) sites. STUDY DESIGN: This retrospective cohort study enrolled infants with 240/7 to 316/7 weeks of gestation with an admission body temperature ≤37.5 °C who were admitted to CHNN-participating NICUs between January 1 and December 31, 2019. RESULTS: A total of 5,913 VPIs were included in this study, of which 4,075 (68.9%) had hypothermia (<36.5 °C) at admission. The incidence of admission hypothermia varied widely across CHNN sites (9-100%). Lower gestational age (GA), lower birth weight, antenatal steroid administration, multiple births, small for GA, Apgar scores <7 at the 5th minute, and intensive resuscitation were significantly associated with admission hypothermia. Compared with infants with normothermia (36.5-37.5 °C), the adjusted odds ratios (ORs) for composite outcome among infants with admission hypothermia <35.5 °C increased to 1.47 (95% confidence interval [CI], 1.15-1.88). The adjusted ORs for mortality among infants with admission hypothermia (36.0-36.4 and <35.5 °C) increased to 1.41 (95% CI, 1.09-1.83) and 1.93 (95% CI, 1.31-2.85), respectively. Admission hypothermia was associated with a higher likelihood of bronchopulmonary dysplasia, but was not associated with necrotizing enterocolitis ≥stage II, severe intraventricular hemorrhage, cystic periventricular leukomalacia, severe retinopathy of prematurity, or sepsis. CONCLUSION: Admission hypothermia remains a common problem for VPIs in a large cohort in China and is associated with adverse outcomes. Continuous quality improvement of admission hypothermia in the future may result in a substantial improvement in the outcomes of VPIs in China. KEY POINTS: · Admission hypothermia is common in VPIs.. · The incidence of admission hypothermia in VPIs remains high in China.. · Admission hypothermia is associated with adverse outcomes in VPIs..
RESUMO
BACKGROUND: Hepatic ischemia reperfusion injury (IRI) is a common liver surgery complication. This study aims to explore the effect and potential mechanism of Sunitinib - a multi-target tyrosine kinase inhibitor - on hepatic IRI. METHODS: We established a hepatic IRI model using C57BL/6 mice, and integrated 40 mg/kg of Sunitinib, solely or combined with 100 µg/kg of coumermycin A1 (C-A1), in the treatment strategy. H&E staining, TUNEL assay, and detection of serum ALT and AST activities were used to assess liver damage. Further, ELISA kits and Western Blots were utilized to determine IL-1ß, TNF-α, IL-6, CXCL10, and CXCL2 levels. Primary macrophages, once isolated, were cultured in vitro with either 2 nM of Sunitinib, or Sunitinib in conjunction with 1 µM of C-A1, to gauge their influence on macrophage polarization. qPCR and Western blot were conducted to examine the level of p-STAT1/STAT1, p-STAT3/STAT3, p-JAK2/JAK2, and M1/M2 polarization markers. To quantify immune cell infiltration, we applied Immunofluorescence. RESULTS: Sunitinib pretreatment significantly alleviated liver injury and reduced p-STAT1/STAT1, p-STAT3/STAT3, p-JAK2/JAK2 levels. In vitro, Sunitinib treatment curbed M1 polarization induced by LPS + IFN-γ and bolstered M2 polarization triggered by IL-4. C-A1 application upregulated JAK2/STAT pathway phosphorylation and promoted LPS + IFN-γ-induced M1 polarization, which was reversed by Sunitinib treatment. In IL-4-stimulated macrophages, application of C-A1 activated the JAK2/STAT pathway and decreased M2-type macrophages, which was reversed by Sunitinib treatment either. CONCLUSION: Sunitinib is capable of guiding the polarization of macrophages toward an M2-type phenotype via the inhibition of the JAK2/STAT pathway, thereby exerting a protective effect on hepatic IRI.
Assuntos
Janus Quinase 2 , Macrófagos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Transdução de Sinais , Sunitinibe , Animais , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Sunitinibe/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/patologia , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Masculino , Transdução de Sinais/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Fatores de Transcrição STAT/metabolismoRESUMO
BACKGROUND: Group 2 innate lymphoid cells (ILC2s) are critical sources of type 2 cytokines and represent one of the major tissue-resident lymphoid cells in the mouse lung. However, the molecular mechanisms underlying ILC2 activation under challenges are not fully understood. RESULTS: Here, using single-cell transcriptomics, genetic reporters, and gene knockouts, we identify four ILC2 subsets, including two non-activation subsets and two activation subsets, in the mouse acute inflammatory lung. Of note, a distinct activation subset, marked by the transcription factor Nr4a1, paradoxically expresses both tissue-resident memory T cell (Trm), and effector/central memory T cell (Tem/Tcm) signature genes, as well as higher scores of proliferation, activation, and wound healing, all driven by its particular regulons. Furthermore, we demonstrate that the Nr4a1+ILC2s are restrained from activating by the programmed cell death protein-1 (PD-1), which negatively modulates their activation-related regulons. PD-1 deficiency places the non-activation ILC2s in a state that is prone to activation, resulting in Nr4a1+ILC2 differentiation through different activation trajectories. Loss of PD-1 also leads to the expansion of Nr4a1+ILC2s by the increase of their proliferation ability. CONCLUSIONS: The findings show that activated ILC2s are a heterogenous population encompassing distinct subsets that have different propensities, and therefore provide an opportunity to explore PD-1's role in modulating the activity of ILC2s for disease prevention and therapy.
Assuntos
Imunidade Inata , Pulmão , Animais , Camundongos , Pulmão/metabolismo , Linfócitos , Receptor de Morte Celular Programada 1/metabolismo , Citocinas/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismoRESUMO
Bluetooth Low Energy Mesh (BLE Mesh) enables Bluetooth flexibility and coverage by introducing Low-Power Nodes (LPNs) and enhanced networking protocol. It is also a commonly used communication method in sensor networks. In BLE Mesh, LPNs are periodically woken to exchange messages in a stop-and-wait way, where the tradeoff between energy and efficiency is a hard problem. Related works have reduced the energy consumption of LPNs mainly in the direction of changing the bearer layer, improving time synchronization and broadcast channel utilization. These algorithms improve communication efficiency; however, they cause energy loss, especially for the LPNs. In this paper, we propose a constrained flooding algorithm based on time series prediction and lightweight GBN (Go-Back-N). On the one hand, the wake-up cycle of the LPNs is determined by the time series prediction of the surrounding load. On the other, LPNs exchange messages through lightweight GBN, which improves the window and ACK mechanisms. Simulation results validate the effectiveness of the Time series Prediction and LlightWeight GBN (TP-LW) algorithm in energy consumption and throughput. Compared with the original algorithm of BLE Mesh, when fewer packets are transmitted, the throughput is increased by 214.71%, and the energy consumption is reduced by 65.14%.
RESUMO
OBJECTIVES: To compare the repair effects of different doses of human umbilical cord mesenchymal stem cells (hUC-MSCs) on white matter injury (WMI) in neonatal rats. METHODS: Two-day-old Sprague-Dawley neonatal rats were randomly divided into five groups: sham operation group, WMI group, and hUC-MSCs groups (low dose, medium dose, and high dose), with 24 rats in each group. Twenty-four hours after successful establishment of the neonatal rat white matter injury model, the WMI group was injected with sterile PBS via the lateral ventricle, while the hUC-MSCs groups received injections of hUC-MSCs at different doses. At 14 and 21 days post-modeling, hematoxylin and eosin staining was used to observe pathological changes in the tissues around the lateral ventricles. Real-time quantitative polymerase chain reaction was used to detect the quantitative expression of myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) mRNA in the brain tissue. Immunohistochemistry was employed to observe the expression levels of GFAP and neuron-specific nuclear protein (NeuN) in the tissues around the lateral ventricles. TUNEL staining was used to observe cell apoptosis in the tissues around the lateral ventricles. At 21 days post-modeling, the Morris water maze test was used to observe the spatial learning and memory capabilities of the neonatal rats. RESULTS: At 14 and 21 days post-modeling, numerous cells with nuclear shrinkage and rupture, as well as disordered arrangement of nerve fibers, were observed in the tissues around the lateral ventricles of the WMI group and the low dose group. Compared with the WMI group, the medium and high dose groups showed alleviated pathological changes; the arrangement of nerve fibers in the medium dose group was relatively more orderly compared with the high dose group. Compared with the WMI group, there was no significant difference in the expression levels of MBP and GFAP mRNA in the low dose group (P>0.05), while the expression levels of MBP mRNA increased and GFAP mRNA decreased in the medium and high dose groups. The expression level of MBP mRNA in the medium dose group was higher than that in the high dose group, and the expression level of GFAP mRNA in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the protein expression of GFAP and NeuN in the low dose group (P>0.05), while the expression of NeuN protein increased and GFAP protein decreased in the medium and high dose groups. The expression of NeuN protein in the medium dose group was higher than that in the high dose group, and the expression of GFAP protein in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the number of apoptotic cells in the low dose group (P>0.05), while the number of apoptotic cells in the medium and high dose groups was less than that in the WMI group, and the number of apoptotic cells in the medium dose group was less than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the escape latency time in the low dose group (P>0.05); starting from the third day of the latency period, the escape latency time in the medium dose group was less than that in the WMI group (P<0.05). The medium and high dose groups crossed the platform more times than the WMI group (P<0.05). CONCLUSIONS: Low dose hUC-MSCs may yield unsatisfactory repair effects on WMI in neonatal rats, while medium and high doses of hUC-MSCs have significant repair effects, with the medium dose demonstrating superior efficacy.
Assuntos
Animais Recém-Nascidos , Transplante de Células-Tronco Mesenquimais , Ratos Sprague-Dawley , Cordão Umbilical , Substância Branca , Animais , Ratos , Humanos , Cordão Umbilical/citologia , Substância Branca/patologia , Substância Branca/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/análise , Células-Tronco Mesenquimais , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/análise , Proteína Básica da Mielina/metabolismo , Masculino , Apoptose , Feminino , RNA Mensageiro/análise , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: Sepsis-related acute kidney injury (AKI) is an inflammatory disease associated with extremely high mortality and health burden. This study explored the possibility of exosomes secreted by adipose-derived mesenchymal stem cells (AMSCs) serving as a carrier for microRNA (miR)-342-5p to alleviate sepsis-related AKI and investigated the possible mechanism. METHODS: Serum was obtained from 30 patients with sepsis-associated AKI and 30 healthy volunteers for the measurement of miR-342-5p, blood urea nitrogen (BUN), and serum creatinine (SCr) levels. For in vitro experiments, AMSCs were transfected with LV-miR-342-5p or LV-miR-67 to acquire miR-342-5p-modified AMSCs and miR-67-modified AMSCs, from which the exosomes (AMSC-Exo-342 and AMSC-Exo-67) were isolated. The human renal proximal tubular epithelial cell line HK-2 was induced by lipopolysaccharide (LPS) to construct a cellular model of sepsis. The expression of Toll-like receptor 9 (TLR9) was also detected in AKI cells and mouse models. The interaction between miR-342-5p and TLR9 was predicted by dual luciferase reporter gene assay. RESULTS: Detection on clinical serum samples showed that BUN, SCr, and TLR9 were elevated and miR-342-5p level was suppressed in the serum of patients with sepsis-associated AKI. Transfection with LV-miR-342-5p reinforced miR-342-5p expression in AMSCs and AMSC-secreted exosomes. miR-342-5p negatively targeted TLR9. LPS treatment enhanced TLR9 expression, reduced miR-342-5p levels, suppressed autophagy, and increased inflammation in HK-2 cells, while the opposite trends were observed in LPS-induced HK-2 cells exposed to AMSC-Exo-342, Rapa, miR-342-5p mimic, or si-TLR9. Additionally, the effects of AMSC-Exo-342 on autophagy and inflammation in LPS-induced cells could be weakened by 3-MA or pcDNA3.1-TLR9 treatment. Injection of AMSC-Exo-342 enhanced autophagy, mitigated kidney injury, suppressed inflammation, and reduced BUN and SCr levels in sepsis-related AKI mouse models. CONCLUSION: miR-342-5p transferred by exosomes from miR-342-5p-modified AMSCs ameliorated AKI by inhibiting TLR9 to accelerate autophagy.
RESUMO
We evaluated the characteristics of high-risk human papillomavirus (Hr-HPV) infection in different grades of vaginal intraepithelial neoplasia (VaIN). 7469 participants were involved in this study, of which 601 were diagnosed with VaIN, including single vaginal intraepithelial neoplasia (s-VaIN, n = 369) and VaIN+CIN (n = 232), 3414 with single cervical intraepithelial neoplasia (s-CIN), 3446 with cervicitis or vaginitis and 8 with vaginal cancer. We got those results. First, the most popular HPV genotypes in VaIN were HPV16, 52, 58, 51, and 56. Second, our study showed that higher parity and older age were risk factors for VaIN3 (p < 0.005). Third, the median Hr-HPV load of VaIN+CIN (725) was higher than that of s-CIN (258) (p = 0.027), and the median Hr-HPV load increased with the grade of VaIN. In addition, the risk of VaIN3 was higher in women with single HPV16 infections (p = 0.01), but those with multiple HPV16 infections faced a higher risk of s-VaIN (p = 0.003) or VaIN+CIN (p = 0.01). Our results suggested that women with higher gravidity and parity, higher Hr-HPV load, multiple HPV16 infections, and perimenopause or menopause status faced a higher risk for VaIN, while those with higher parity, single HPV16 infections, and menopause status are more prone to VaIN3.
Assuntos
Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Neoplasias Vaginais , Feminino , Humanos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/diagnóstico , Pequim , Neoplasias Vaginais/diagnóstico , Papillomaviridae/genéticaRESUMO
Salt stress has become one of the main factors limiting crop yield in recent years. The post-germinative growth is most sensitive to salt stress in soybean. In this study, cultivated and wild soybeans were used for an integrated metabonomics and transcriptomics analysis to determine whether wild soybean can resist salt stress by maintaining the mobilization of stored substances in cotyledons and the balance of carbon and nitrogen in the hypocotyl/root axis (HRA). Compared with wild soybean, the growth of cultivated soybean was significantly inhibited during the post-germinative growth period under salt stress. Integrating analysis found that the breakdown products of proteins, such as glutamate, glutamic acid, aspartic acid, and asparagine, increased significantly in wild soybean cotyledons. Asparagine synthase and fumarate hydratase genes and genes encoding HSP20 family proteins were specifically upregulated. In wild soybean HRA, levels of glutamic acid, aspartic acid, asparagine, citric acid, and succinic acid increased significantly, and the glutamate decarboxylase gene and the gene encoding carbonic anhydrase in nitrogen metabolism were significantly upregulated. The metabolic model indicated that wild soybean enhanced the decomposition of stored proteins and the transport of amino acids to the HRA in cotyledons and the GABA shunt to maintain carbon and nitrogen balance in the HRA to resist salt stress. This study provided a theoretical basis for cultivating salt-tolerant soybean varieties and opened opportunities for the development of sustainable agricultural practices.
Assuntos
Fabaceae , Glycine max , Glycine max/metabolismo , Hipocótilo/metabolismo , Cotilédone/metabolismo , Tolerância ao Sal/genética , Asparagina/genética , Asparagina/metabolismo , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Fabaceae/metabolismo , Ácido Glutâmico , Nitrogênio/metabolismo , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismoRESUMO
BACKGROUND: Dual antiplatelet therapy (DAPT) with aspirin and clopidogrel was recommended as the secondary prevention of minor ischemic stroke or transient ischaemic attack (TIA). However, genetic polymorphisms of CYP2C19 had been identified as the major cause of poor responsiveness to clopidogrel. Ticagrelor, unlike clopidogrel, did not depend on metabolic activation, but it remained unclear whether ticagrelor was superior to clopidogrel in ischemic stroke. We performed a network meta-analysis to compare the efficacy and safety of ticagrelor, clopidogrel, and aspirin in the minor ischemic stroke and TIA populations. METHODS: Databases of Cochrane Library, ClinicalTrials.gov, and PubMed were searched up to June 19, 2023. Randomized controlled trials (RCTs) assessing antiplatelet drugs for minor stroke or TIA were included. Statistical processing was conducted by using multivariate meta-analysis routines of STATA. RESULTS: Seven RCTs were included involving 41,745 participants. There was no significant difference between the two DAPTs in preventing stroke recurrence (OR, 1.16; 95% CI, 0.93-1.44), ischemic stroke recurrence (OR, 1.16; 95% CI, 0.93-1.45), and major hemorrhage (OR, 1.22; 95% CI, 0.62,2.39). Compared with aspirin alone, the two DAPT regimen reduced the risk of stroke recurrence (clopidogrel: OR, 0.69; 95% CI, 0.60-0.80, ticagrelor: OR, 0.66; 95% CI, 0.49-0.87) and ischemic stroke recurrence, but increased the incidence of major hemorrhage (clopidogrel: OR, 2.05; 95% CI, 1.22- 3.77; ticagrelor: OR, 2.55; 95% CI, 1.25-4.99). Despite being associated with a higher risk of any bleeding, ticagrelor did not impact the composite of vascular events or mortality. While ticagrelor and aspirin reduced the risk of ischemic stroke recurrence (OR, 0.77; 95% CI, 0.63- 0.92) without increasing the risk of major bleeding (OR 0.94; 95% CI 0.45-1.95) in the Asian population mainly Chinese. CONCLUSIONS: DAPT was superior to aspirin in stroke prevention, but little difference existed between the two DAPT regimens. Asian population mainly Chinese may benefit from DAPT with aspirin and ticagrelor. But further head-to-head RCTs are needed to validate the study results.
Assuntos
Ataque Isquêmico Transitório , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Aspirina/uso terapêutico , Inibidores da Agregação Plaquetária/uso terapêutico , Ataque Isquêmico Transitório/tratamento farmacológico , Ataque Isquêmico Transitório/prevenção & controle , Ticagrelor/uso terapêutico , Clopidogrel/uso terapêutico , Metanálise em Rede , Quimioterapia Combinada , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle , Hemorragia/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/prevenção & controleRESUMO
Both reversible noncovalent inhibitors and irreversible covalent inhibitors targeting tyrosine kinases have their disadvantages. The reversible covalent inhibitors with electrophilic group cyanoacrylamide as warheads reacting with cysteine residues could solve the dilemmas. However, there are still several unresolved issues regarding the electrophilic groups. In this manuscript, a series of EGFR inhibitors with double electron-withdrawing substituents introduced into the Cα position on the olefin bond were designed and synthesized. The binding structures and characteristics of inhibitors with the kinase in both the first noncovalent binding phase and the second covalent binding step were explored and combined with molecular docking and molecular dynamics simulations. Then, the reverse ß-elimination reactions of the thiol-Michael adducts were investigated by applying density functional theory calculations. In addition, the effects of different electrophilic substituents of Cα on the binding between the inhibitors and kinase were elucidated. The results suggested that the electrophilicity and size of the electron-withdrawing groups play an important role in the specific interactions during the reaction. The compounds with the electron-withdrawing groups that had medium electrostatic and steric complementarity to the kinase active site could cooperatively stabilize the complexes and showed relatively good potent activities in the kinase assay experiment. The mechanical and structural information in this study could enhance our understanding of the functioning of the electron-withdrawing groups in the covalent inhibitors. The results might help to design efficient cysteine targeting inhibitors in the future.
Assuntos
Cisteína , Compostos de Sulfidrila , Cisteína/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/químicaRESUMO
Abelson tyrosine kinase (c-Abl) is involved in various biological processes in neurodegenerative diseases and is an attractive target for anti-PD (Parkinson's disease) drug discovery. Based on our previous work, we designed several novel c-Abl inhibitors through a conformational constrained strategy and evaluated their pharmacological activities. Among them, compound A6 exhibited superior inhibitory activity against c-Abl than nilotinib in the homogenous time-resolved fluorescence (HTRF) assay. Furthermore, A6 displayed higher neuroprotective effects against SH-SY5Y cell death induced by MPP+ and lower cytotoxicity than that of nilotinib. Molecular modeling revealed that the 1H-pyrrolo[2,3-B]pyridine ring may contribute to the high affinity of A6 for binding to c-Abl. Collectively, these results suggest that A6 deserves further investigation as a c-Abl inhibitor for neurodegenerative disorders.
Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fármacos Neuroprotetores/farmacologia , Pirimidinas/farmacologiaRESUMO
BACKGROUND: The objective of this study was to examine the correlation between serum Klotho protein concentration and postmenopausal hypertension. METHODS: A cross-sectional study design was used, in which 1713 postmenopausal women who participated in the National Health and Nutrition Examination Survey (NHANES) 2013-2016 were included. Multivariate logistic regression models were applied to assess the association between serum Klotho concentration and postmenopausal hypertension. RESULTS: A weighted analysis was executed, revealing a noteworthy hypertension prevalence rate of 53.44% among the study participants. Participants with lower quartile of serum Klotho concentration had a higher prevalence of hypertension than those in higher quartiles (Q1:62.29% vs. Q2: 48.52% vs. Q3: 47.33% vs. Q4: 55.02%, p < 0.001). Furthermore, a multivariate logistic regression analysis confirmed that participants with higher quartiles of serum Klotho concentration had a significantly reduced risk of postmenopausal hypertension compared to those in the lowest quartile. Subgroup analysis displayed consistent findings in those following subgroups: aged ≥ 65 years, obesity, nonsmokers, individuals without diabetes and coronary heart disease, and those with higher levels of estradiol and estimated glomerular filtration rate. Based on the results, we concluded that there is a significant association between serum Klotho concentration and postmenopausal hypertension. CONCLUSION: The findings of this study revealed a significant inverse association between serum Klotho concentration and hypertension among postmenopausal women. Serum Klotho concentration may serve as a valuable biomarker for risk stratification in postmenopausal women who are at risk of developing hypertension.
Assuntos
Hipertensão , Pós-Menopausa , Humanos , Feminino , Inquéritos Nutricionais , Estudos Transversais , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Taxa de Filtração GlomerularRESUMO
PURPOSE: The treatment for symptomatic intact discoid lateral meniscus (DLM) is controversial and the long-term clinical outcome remains unknown. The purpose of this study was to analyze the overall failure rate of nonsurgical treatment for symptomatic intact DLM and identify the risk factors for nonoperative management failure. METHODS: Consecutive patients who underwent nonsurgical treatment for symptomatic intact DLM at our hospital from 2014 to 2017 were retrospectively reviewed. Patients were divided into Group A (failure group) and Group B (nonfailure group) based on overall failure criteria: conversion to surgery, progression of a tear on MRI re-examination, or severely abnormal International Knee Documentation Committee (IKDC) scores. Statistical analyses between the two groups were performed for demographic and radiographic characteristics. Multivariate regression analysis was used to determine the risk factors associated with worse outcomes. RESULTS: One-hundred and four knees in 96 patients were included in this study. After a mean follow-up of 76.9 ± 11.1 months, 25 knees (24.0%) met the overall failure criteria. Multivariate regression analysis demonstrated that age and the presence of intrameniscus signals increased the risk of nonoperative management failure. The clinical criterion of age > 37.5 years combined with the imaging criterion of the presence of intrameniscal signals predicted conservative treatment failure of symptomatic intact DLM with a sensitivity of 0.87 and a specificity of 0.91. CONCLUSION: Twenty-five (24.0%) knees that underwent nonsurgical treatment met the overall failure criteria after a mean follow-up of 76.9 months. With increased age and the presence of intrameniscal signals, the nonoperative results become worse. LEVEL OF EVIDENCE: III.
RESUMO
Electrocatalytic reduction of carbon dioxide (CO2RR) employs electricity to store renewable energy in the form of reduction products. The activity and selectivity of the reaction depend on the inherent properties of electrode materials. Single-atom alloys (SAAs) exhibit high atomic utilization efficiency and unique catalytic activity, making them promising alternatives to precious metal catalysts. In this study, density functional theory (DFT) was employed to predict stability and high catalytic activity of Cu/Zn (101) and Pd/Zn (101) catalysts in the electrochemical environment at the single-atom reaction site. The mechanism of C2 products (glyoxal, acetaldehyde, ethylene, and ethane) produced by electrochemical reduction on the surface was elucidated. The C-C coupling process occurs through the CO dimerization mechanism, and the formation of the *CHOCO intermediate proves beneficial, as it inhibits both HER and CO protonation. Furthermore, the synergistic effect between single atoms and Zn results in a distinct adsorption behavior of intermediates compared to traditional metals, giving SAAs unique selectivity towards the C2 mechanism. At lower voltages, the Zn (101) single-atom alloy demonstrates the most advantageous performance in generating ethane on the surface, while acetaldehyde and ethylene exhibit significant certain potential. These findings establish a theoretical foundation for the design of more efficient and selective carbon dioxide catalysts.
RESUMO
The electrochemical carbon dioxide reduction reaction (CO2RR) has emerged as a promising approach to addressing global energy and environmental challenges. Alloys are of particular importance in these applications due to their unique chemical and physical properties. In this study, the possible mechanism of the C1 products from the electrochemical reduction of CO2 on four different surfaces of Pd3Au alloy bimetallic catalysts is predicted using the density functional theory. The differences in the number of d-band electrons and the charge distribution and morphology of the different surfaces result in differing catalytic activity and selectivity on the same surface. On different surfaces, Pd3Au alloy bimetallic catalysts have different potential limiting steps in CO2RR, resulting in differing selectivity. The Pd3Au (100) surface has a good selectivity for HER, indicating that the increase in the net charge on the surface of the alloy improves the selectivity for HER. The Pd3Au (211) surface, with a step structure, shows a good selectivity for methanol production from CO2RR. In addition, an electronic structure analysis shows that the selectivity of the reactions involved in the conversion of adsorbates is determined by the difference between the center of the d-band on the top of the catalyst, where the reactant and the product are located. The results of this study may provide some theoretical basis for designing and developing more efficient and selective CO2 reduction catalysts.
RESUMO
OBJECTIVES: To study the effect of platelet-derived growth factor-BB (PDGF-BB) on pulmonary vascular remodeling in neonatal rats with hypoxic pulmonary hypertension (HPH). METHODS: A total of 128 neonatal rats were randomly divided into four groups: PDGF-BB+HPH, HPH, PDGF-BB+normal oxygen, and normal oxygen (n=32 each). The rats in the PDGF-BB+HPH and PDGF-BB+normal oxygen groups were given an injection of 13 µL 6×1010 PFU/mL adenovirus with PDGF-BB genevia the caudal vein. After 24 hours of adenovirus transfection, the rats in the HPH and PDGF-BB+HPH groups were used to establish a neonatal rat model of HPH. Right ventricular systolic pressure (RVSP) was measured on days 3, 7, 14, and 21 of hypoxia. Hematoxylin-eosin staining was used to observe pulmonary vascular morphological changes under an optical microscope, and vascular remodeling parameters (MA% and MT%) were also measured. Immunohistochemistry was used to measure the expression levels of PDGF-BB and proliferating cell nuclear antigen (PCNA) in lung tissue. RESULTS: The rats in the PDGF-BB+HPH and HPH groups had a significantly higher RVSP than those of the same age in the normal oxygen group at each time point (P<0.05). The rats in the PDGF-BB+HPH group showed vascular remodeling on day 3 of hypoxia, while those in the HPH showed vascular remodeling on day 7 of hypoxia. On day 3 of hypoxia, the PDGF-BB+HPH group had significantly higher MA% and MT% than the HPH, PDGF-BB+normal oxygen, and normal oxygen groups (P<0.05). On days 7, 14, and 21 of hypoxia, the PDGF-BB+HPH and HPH groups had significantly higher MA% and MT% than the PDGF-BB+normal oxygen and normal oxygen groups (P<0.05). The PDGF-BB+HPH and HPH groups had significantly higher expression levels of PDGF-BB and PCNA than the normal oxygen group at all time points (P<0.05). On days 3, 7, and 14 of hypoxia, the PDGF-BB+HPH group had significantly higher expression levels of PDGF-BB and PCNA than the HPH group (P<0.05), while the PDGF-BB+normal oxygen group had significantly higher expression levels of PDGF-BB and PCNA than the normal oxygen group (P<0.05). CONCLUSIONS: Exogenous administration of PDGF-BB in neonatal rats with HPH may upregulate the expression of PCNA, promote pulmonary vascular remodeling, and increase pulmonary artery pressure.