Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888999

RESUMO

Histone post-translational modifications (PTMs), such as acetylation and recently identified lysine 2-hydroxyisobutyrylation (Khib), act as active epigenomic marks in plants. SANT domain-containing proteins SANT1, SANT2, SANT3 and SANT4 (SANT1/2/3/4), derived from PIF/Harbinger transposases, form a complex with HISTONE DEACETYLASE 6 (HDA6) to regulate gene expression via histone deacetylation. However, whether SANT1/2/3/4 coordinate different types of PTMs to regulate transcription and mediate responses to specific stresses in plants remains unclear. Here, in addition to modulating histone deacetylation, we found that SANT1/2/3/4 proteins acted like HDA6 or HDA9 in regulating the removal of histone Khib in Arabidopsis (Arabidopsis thaliana). Histone H3 lysine acetylation (H3KAc) and histone Khib were coordinated by SANT1/2/3/4 to regulate gene expression, with H3KAc playing a predominant role and Khib acting complementarily to H3KAc. SANT1/2/3/4 mutation significantly increased the expression of heat-inducible genes with concurrent change of H3KAc levels under normal and heat stress conditions, resulting in enhanced thermotolerance. This study revealed the critical roles of Harbinger transposon-derived SANT domain-containing proteins in transcriptional regulation by coordinating different types of histone PTMs and in the regulation of plant thermotolerance by mediating histone acetylation modification.

2.
Chem Commun (Camb) ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39175436

RESUMO

A ternary iron-cobalt-nickel hydroxide nanoarray catalyst was fabricated, which achieves enhanced performance towards electro-oxidative depolymerization of lignin models to produce benzoic acid and phenol.

3.
Plants (Basel) ; 13(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38337903

RESUMO

As one of the essential nutrients for plants, nitrogen (N) has a major impact on the yield and quality of wheat worldwide. Due to chemical fertilizer pollution, it has become increasingly important to improve crop yield by increasing N use efficiency (NUE). Therefore, understanding the response mechanisms to low N (LN) stress is essential for the regulation of NUE in wheat. In this study, LN stress significantly accelerated wheat root growth, but inhibited shoot growth. Further transcriptome analysis showed that 8468 differentially expressed genes (DEGs) responded to LN stress. The roots and shoots displayed opposite response patterns, of which the majority of DEGs in roots were up-regulated (66.15%; 2955/4467), but the majority of DEGs in shoots were down-regulated (71.62%; 3274/4565). GO and KEGG analyses showed that nitrate reductase activity, nitrate assimilation, and N metabolism were significantly enriched in both the roots and shoots. Transcription factor (TF) and protein kinase analysis showed that genes such as MYB-related (38/38 genes) may function in a tissue-specific manner to respond to LN stress. Moreover, 20 out of 107 N signaling homologous genes were differentially expressed in wheat. A total of 47 transcriptome datasets were used for weighted gene co-expression network analysis (17,840 genes), and five TFs were identified as the potential hub regulatory genes involved in the response to LN stress in wheat. Our findings provide insight into the functional mechanisms in response to LN stress and five candidate regulatory genes in wheat. These results will provide a basis for further research on promoting NUE in wheat.

4.
Sci Total Environ ; 950: 175296, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111417

RESUMO

The microbial enrichment of traditional biocarriers is limited due to the inadequate consideration of spatial structure and surface charging characteristics. Here, capitalizing on the ability of 3D printing technology to fabricate high-resolution materials, we further designed a positively charged sodium alginate/ε-poly-l-lysine (SA/ε-PL) printing ink, and the 3D printed biocarriers with ideal pore structure and rich positive charge were constructed to enhance the microbial enrichment. The rheological and mechanical tests confirmed that the developed SA/ε-PL ink could simultaneously satisfy the smooth extrusion for printing process and the maintenance of 3D structure. The utilization of the ε-PL secondary cross-linking strategy reinforced the 3D mechanical structure and imparted the requisite physical properties for its application as a biocarrier. Compared with traditional sponge carriers, 3D printed biocarrier had a faster initial attachment rate and a higher biomass of 14.58 ± 1.18 VS/cm3, and the nitrogen removal efficiency increased by 53.9 %. Besides, due to the superior electrochemical properties and biocompatibility, the 3D printed biocarriers effectively enriched the electroactive denitrifying bacteria genus Trichococcus, thus supporting its excellent denitrification performance. This study provided novel insights into the development of new functional biocarriers in the wastewater treatment, thereby providing scientific guidance for practical engineering.

5.
Int J Ophthalmol ; 17(7): 1337-1343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026904

RESUMO

AIM: To investigate Omicron's impact on clinical presentation of acute primary angle closure (APAC) in China. METHODS: A consecutive case series with historical controls was conducted at Shenzhen Eye Hospital, the largest specialized hospital in Shenzhen, China. Medical records from a two-month period during the Omicron pandemic (December 1, 2022, to January 31, 2023) were compared with records from two control groups (12/2018-1/2019 and 12/2021-1/2022) before pandemic. Patients with APAC were included, and the prevalence of APAC and demographic characteristics in Omicron-infected and non-infected patients were compared. RESULTS: Seventy-one (23.43%) out of 303 patients were diagnosed with APAC in the pandemic cohort, which was 2.98 and 2.61 times higher than that in control cohorts (7.87% in 2019, 8.96% in 2022, P<0.001). The pandemic cohort has significantly higher Omicron-infected rate (78.87% vs 0 vs 0; P<0.001), lower proportion of glaucoma history (16.90% vs 42.86% vs 41.67%, P=0.005), higher surgical rate (95.77% vs 83.33% vs 78.57%, P=0.024), higher total medical costs and larger pupil diameter (5.63±0.15 vs 4.68±0.15 vs 4.69±0.22 mm, P<0.01). In 83% Omicron-infected patients, ocular symptoms appeared within 3d after systemic symptoms onset. In multivariate analysis, Omicron infection (P<0.001) was the only independent predictor of pupil diameter. CONCLUSION: In the Omicron epidemic in China, there is an increase of prevalence and severity of APAC, particularly focusing on the first 3d following infection.

6.
Am J Ophthalmol ; 265: 61-72, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38555010

RESUMO

PURPOSE: To assess the cone photoreceptors' morphology and associated retinal sensitivity in laser-induced retinopathy (LIR) using adaptive optics scanning laser ophthalmoscopy (AO-SLO) and microperimetry (MP). DESIGN: Cohort study. METHODS: This study included 13 patients (15 eyes) with LIR and 38 age-matched healthy volunteers (38 eyes). Participants underwent comprehensive evaluations including AO-SLO, MP, and spectral-domain OCT. Lesion morphology, cone density, dispersion, and regularity in AO-SLO were assessed and correlated with visual function. RESULTS: In AO-SLO images, LIR lesions were predominantly characterized by hyporeflective regions, suggesting potential cone loss at the fovea, accompanied by the presence of sizable clumps of hyperreflective material within these lesions. The average size of lesions in affected eyes was 97,128±107,478 µm², ranging from 6705 to 673,348 µm². Compared with the healthy contralateral eye and control group, LIR demonstrated significantly reduced cone density, increased cone dispersion, and notably decreased cone regularity in all 4 quadrants at 3° eccentricity (all P values < .05). Lesion morphology in AO-SLO correlated with ellipsoid zone defects observed in OCT, showing a positive correlation in size (r = 0.84, P < .001) but not with retinal sensitivities (P = .09). Similarly, cone density at 3° eccentricity did not correlate with retinal sensitivities (P = .13). CONCLUSIONS AND RELEVANCE: The study provides crucial insights into the morphologic and functional impacts of LIR on cone photoreceptors, revealing significant morphologic changes in cones that do not consistently align with functional outcomes. This research highlights the need for continued exploration into the relationship between retinal structure and function in LIR, and the importance of heightened public awareness and preventive strategies to mitigate the risk of LIR.


Assuntos
Oftalmoscopia , Células Fotorreceptoras Retinianas Cones , Doenças Retinianas , Tomografia de Coerência Óptica , Acuidade Visual , Testes de Campo Visual , Campos Visuais , Humanos , Masculino , Feminino , Tomografia de Coerência Óptica/métodos , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Acuidade Visual/fisiologia , Campos Visuais/fisiologia , Adulto , Pessoa de Meia-Idade , Doenças Retinianas/fisiopatologia , Doenças Retinianas/diagnóstico , Doenças Retinianas/etiologia , Contagem de Células , Idoso
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa