Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 10(1): e0117098, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25603410

RESUMO

OBJECTIVE: Matrix Gla protein (MGP) is reported to inhibit bone morphogenetic protein (BMP) signal transduction. MGP deficiency is associated with medial calcification of the arterial wall, in a process that involves both osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) and mesenchymal transition of endothelial cells (EndMT). In this study, we investigated the contribution of BMP signal transduction to the medial calcification that develops in MGP-deficient mice. APPROACH AND RESULTS: MGP-deficient mice (MGP(-/-)) were treated with one of two BMP signaling inhibitors, LDN-193189 or ALK3-Fc, beginning one day after birth. Aortic calcification was assessed in 28-day-old mice by measuring the uptake of a fluorescent bisphosphonate probe and by staining tissue sections with Alizarin red. Aortic calcification was 80% less in MGP(-/-) mice treated with LDN-193189 or ALK3-Fc compared with vehicle-treated control animals (P<0.001 for both). LDN-193189-treated MGP(-/-) mice survived longer than vehicle-treated MGP(-/-) mice. Levels of phosphorylated Smad1/5 and Id1 mRNA (markers of BMP signaling) did not differ in the aortas from MGP(-/-) and wild-type mice. Markers of EndMT and osteogenesis were increased in MGP(-/-) aortas, an effect that was prevented by LDN-193189. Calcification of isolated VSMCs was also inhibited by LDN-193189. CONCLUSIONS: Inhibition of BMP signaling leads to reduced vascular calcification and improved survival in MGP(-/-) mice. The EndMT and osteogenic transdifferentiation associated with MGP deficiency is dependent upon BMP signaling. These results suggest that BMP signal transduction has critical roles in the development of vascular calcification in MGP-deficient mice.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Calcificação Vascular/tratamento farmacológico , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas da Matriz Extracelular/genética , Imunofluorescência , Camundongos , Camundongos Knockout , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Calcificação Vascular/genética , Proteína de Matriz Gla
2.
PLoS One ; 9(4): e94784, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24755989

RESUMO

The mRNA processing body (P-body) is a cellular structure that regulates the stability of cytoplasmic mRNA. MARF1 is a murine oocyte RNA-binding protein that is associated with maintenance of mRNA homeostasis and genomic stability. In this study, autoantibodies were used to identify Limkain B (LMKB), the human orthologue of MARF1, as a P-body component. Indirect immunofluorescence demonstrated that Ge-1 (a central component of the mammalian core-decapping complex) co-localized with LMKB in P-bodies. Two-hybrid and co-immunoprecipitation assays were used to demonstrate interaction between Ge-1 and LMKB. The C-terminal 120 amino acids of LMKB mediated interaction with Ge-1 and the N-terminal 1094 amino acids of Ge-1 were required for interaction with LMKB. LMKB is the first protein identified to date that interacts with this portion of Ge-1. LMKB was expressed in human B and T lymphocyte cell lines; depletion of LMKB increased expression of IFI44L, a gene that has been implicated in the cellular response to Type I interferons. The interaction between LMKB/MARF1, a protein that contains RNA-binding domains, and Ge-1, which interacts with core-decapping proteins, suggests that LMKB has a role in the regulation of mRNA stability. LMKB appears to have different functions in different cell types: maintenance of genomic stability in developing oocytes and possible dampening of the inflammatory response in B and T cells.


Assuntos
Antígenos/genética , Autoantígenos/metabolismo , Estruturas Citoplasmáticas/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas/metabolismo , Processamento Pós-Transcricional do RNA/genética , Animais , Antígenos/metabolismo , Autoanticorpos/sangue , Autoantígenos/química , Autoantígenos/genética , Proteínas de Ciclo Celular , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Endorribonucleases , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Imunoprecipitação , Ligação Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa