Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(13): e2308165, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37968247

RESUMO

During the layer-by-layer (LBL) processing of polymer solar cells (PSCs), the swelling and molecule interdiffusion are essential for achieving precise, controllable vertical morphology, and thus efficient PSCs. However, the influencing mechanism of material properties on morphology and correlated device performance has not been paid much attention. Herein, a series of fluorinated/non-fluorinated polymer donors (PBDB-T and PBDB-TF) and non-fullerene acceptors (ITIC, IT-2F, and IT-4F) are employed to investigate the performance of LBL devices. The impacts of fluorine substitution on the repulsion and miscibility between the donor and acceptor, as well as the molecular arrangement of the donor/acceptor and the vertical distribution of the LBL devices are systematically explored by the measurement of donor/acceptor Flory-Huggins interaction parameters, spectroscopic ellipsometry, and neutron reflectivity, respectively. With efficient charge transfer due to the ideal vertical and horizon morphology properties, devices based on PBDB-TF/IT-4F exhibit the highest fill factors (FFs) as well as champion power conversion efficiencies (PCEs). With this guidance, high-performance LBL devices with PCE of 17.2%, 18.5%, and 19.1% are obtained by the fluorinated blend of PBDB-TF/Y6, PBDB-TF/L8-BO, and D18/L8-BO respectively.

2.
Nanotechnology ; 34(45)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37552954

RESUMO

Copper thiocyanate (CuSCN) has been widely used in photodetectors (PDs). However, the reported CuSCN-based PDs are suffered from narrow operating wavelength range and relatively low photodetection performance. Here, we fabricate an CuSCN/Si heterojunction PD by a simple low-temperature solution spin-coating method achieving excellent performance. Our designed CuSCN/Si PD exhibits a broadband response range covering ultraviolet-visible-infrared, a high detectivity of 2.26 × 1012Jones coming from an ultralow dark current of 23 pA, and a decent responsivity of 11 mA W-1, a high linear dynamic range of 122 dB, and short response time of 25/150µ(rise and decay time). Moreover, we demonstrate multi-color imaging across the wide wavelength range, indicating the CuSCN/Si PD has a promising potential in the imaging field. This work may pave the way for fabricating low-cost, nontoxicity, and high-performance CuSCN-based PD and broadening its applications.

3.
Macromol Rapid Commun ; 42(7): e2000683, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33350003

RESUMO

The electron-deficient ester group substitution in the sidechain of the commonly used electron-withdrawing quinoxaline (Qx) unit is seldom studied, while ester-substituted Qx units possess easy syntheses and facile modulation of the polymer solubility, and the enhanced electron-withdrawing property of ester substituted Qx unit can theoretically broaden the optical absorption of the resulting polymers and improve the open circuit voltage in the corresponding organic solar cells (OSCs). In this work, a novel ester-substituted Qx-based narrow bandgap polymer (NBG) donor material PBDTT-EFQx, which exhibits an absorption edge of 790 nm (bandgap < 1.6 eV), is designed and synthesized. Results show that the OSCs composed of PBDTT-EFQx and PC71 BM present the highest power conversion efficiency (PCE) of 6.8%, compared to PCEs of 5.0% for PBDTT-EFQx:ITIC based devices and 4.1% for PBDTT-EFQx:N2200 based devices, respectively. Characterizations and analyses indicate that the PC71 BM-based OSCs have well-matched energy levels, better complementary light absorption, the highest and most balanced carrier mobilities, as well as the lowest degree of recombination losses, and therefore, leading to the highest PCE among the three types of OSCs. This work reveals that the ester-substituted quinoxaline unit is one of the potential building blocks for NBG polymer donors.


Assuntos
Energia Solar , Ésteres , Polímeros , Quinoxalinas , Luz Solar
4.
Chemphyschem ; 21(9): 908-915, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150322

RESUMO

For all-polymer solar cells which are composed of polymer donors and polymer acceptors, the effect of alkyl side chains on photovoltaic performance is a matter of some debate, and this effect remains difficult to forecast. In this concise contribution, we demonstrate that three alkyls namely branched alkyl 2-butyloctyl (2BO), long linear alkyl n-dodecyl (C12), and double-short linear alkyl n-hexyls (DC6) incorporated into the side chains of large bandgap polymer donor PBDT-TTz can induce considerable, of significance, and different electronic, optical, and morphological parameters. Systematic studies shed light on the critical role of the double-short linear alkyl n-hexyls (DC6) in (i) producing large ionization potential value, (ii) increasing propensity of the polymer to order along the π-stacking direction, (iii) generating polymer crystallites with more preferential "face-on" orientation, consequently, (iv) improvement of carriers transportation, (v) suppression of charge recombination, (vi) reduction of energy loss in all-polymer devices. In parallel, we unearth that the PBDT-TTz with double-short linear alkyl n-hexyls (DC6) represents the highest efficiency of 8.3 %, whereas, the other two PBDT-TTz analogues (2BO, C12) yield efficiencies of less than 3 % in optimized all-polymer solar cells. Though branched or long linear alkyl side chains (2BO, C12) have been applied to provide the solution processability of conjugated polymers, motifs bearing multiple short linear alkyl substituents (DC6) are proved critical to the development of high performing polymers.

5.
ACS Appl Mater Interfaces ; 12(8): 9545-9554, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32013390

RESUMO

State-of-the-art non-fullerene bulk-heterojunction (BHJ) polymer solar cells outperform the more extensively studied polymer-fullerene BHJ solar cells in terms of efficiency, thermal-, and photostability. Considering the strong light absorption in the near-infrared region (600-1000 nm) for most of the efficient acceptors, the exploration of high-performing large band gap (LBG) polymer donors with complementary optical absorption ranging from 400 to 700 nm remains critical. In this work, the strategy of concurrently incorporating fluorine (-F) and unsaturated nitrogen (-N) substituents along the polymer backbones is used to develop the LBG polymer donor PB[N][F]. Results show that the F- and N-substituted polymer donor PB[N][F] realizes up to 14.4% efficiency in BHJ photovoltaic devices when paired with a benchmark molecule acceptor Y6, which largely outperforms the analogues PB with an efficiency of only 3.6% and PB[N] with an efficiency of 11.8%. Systematic examinations show that synergistic effects of polymer backbone fluorination and nitrogenation can significantly increase ionization potential values, improve charge transport, and reduce bimolecular recombination and trap-assisted recombination in the PB[N][F]:Y6 BHJ system. Importantly, our study shows that the F- and N-substituted conjugated polymers are promising electron-donor materials for solution-processed non-fullerene BHJ solar cells.

6.
ACS Appl Mater Interfaces ; 12(21): 24165-24173, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32366090

RESUMO

The vertical component distribution of bulk heterojunction (BHJ) active film shows a significant impact on determining the device performance in polymer solar cells (PSCs). Processing solvent additives are well known for regulating the BHJ active layer morphology; however, there are few reports regarding the quantitative evaluation of the effect. Herein, a study of the quantitative determination of the vertical segregation in combination of molecular ordering of PBDB-T/ITIC blend films with various 1,8-diiodooctane (DIO) contents is provided. A 0.5% (volume ratio) DIO-added blend film achieves the highest power conversion efficiency of 10.75%. The reduced performance of the PSCs resulted from the excessive vertical component segregation and overcrystallization investigated by various techniques. X-ray photoelectron spectroscopy indicates that DIO aggravates the PBDB-T enrichment region at the air side. Neutron reflectivity further quantitatively figures out the phase separation effect. Although increased crystallinity of ITIC and a higher face-on ratio of PBDB-T in active layer were obtained with increased DIO content approved by grazing-incidence wide-angle X-ray scattering (GIWAXS), the enhanced vertical distribution along with the enhanced crystal size of ITIC leads to the reduced performance of the PSCs due to the reduced carrier transportation paths between donor and acceptor.

7.
ACS Appl Mater Interfaces ; 11(49): 45979-45990, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31722524

RESUMO

The vertical composition distribution of a bulk heterojunction (BHJ) photoactive layer is known to have dramatic effects on photovoltaic performance in polymer solar cells. However, the vertical composition distribution evolution rules of BHJ films are still elusive. In this contribution, three BHJ film systems, composed of polymer donor PBDB-T, and three different classes of acceptor (fullerene acceptor PCBM, small-molecule acceptor ITIC, and polymer acceptor N2200) are systematically investigated using neutron reflectometry to examine how donor-acceptor interaction and solvent additive impact the vertical composition distribution. Our results show that those three BHJ films possess homogeneous vertical composition distributions across the bulk of the film, while very different composition accumulations near the top and bottom surface were observed, which could be attributed to different repulsion, miscibility, and phase separation between the donor and acceptor components as approved by the measurement of the donor-acceptor Flory-Huggins interaction parameter χ. Moreover, the solvent additive 1,8-diiodooctane (DIO) can induce more distinct vertical composition distribution especially in nonfullerene acceptor-based BHJ films. Thus, higher power conversion efficiencies were achieved in inverted solar cells because of facilitated charge transport in the active layer, improved carrier collection at electrodes, and suppressed charge recombination in BHJ solar cells.

8.
RSC Adv ; 8(9): 4786-4793, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35539531

RESUMO

Lithium-sulfur batteries are regarded as a promising energy storage system. However, they are plagued by rapid capacity decay, low coulombic efficiency, a severe shuttle effect and low sulfur loading in cathodes. To address these problems, effective carriers are highly demanded to encapsulate sulfur in order to extend the cycle life. Herein, we introduced a doped-PEDOT:PSS-coated MIL-101/S multi-core-shell structured composite. The unique structure of MIL-101, large specific area and conductive shell ensure high dispersion of sulfur in the composite and minimize the loss of polysulfides to the electrolyte. The doped-PEDOT:PSS-coated sulfur electrodes exhibited an increase in initial capacity and an improvement in rate characteristics. After 192 cycles at the current density of 0.1C, a doped-PEDOT:PSS-coated MIL-101/S electrode maintained a capacity of 606.62 mA h g-1, while the MIL-101/S@PEDOT:PSS electrode delivered a capacity of 456.69 mA h g-1. The EIS measurement revealed that the surface modification with the conducting polymer provided a lower resistance to the sulfur electrode, which resulted in better electrochemical behaviors in Li-S battery applications. Test results indicate that the MIL-101/S@doped-PEDOT:PSS is a promising host material for the sulfur cathode in the lithium-sulfur battery applications.

9.
Nanoscale Res Lett ; 12(1): 506, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28836136

RESUMO

Efficient Si/organic hybrid solar cells were fabricated with dimethyl sulfoxide (DMSO) and surfactant-doped poly(3,4-ethylenedioxythiophene): polystyrene (PEDOT:PSS). A post-treatment on PEDOT:PSS films with polar solvent was performed to increase the device performance. We found that the performance of hybrid solar cells increase with the polarity of solvent. A high conductivity of 1105 S cm- 1 of PEDOT:PSS was achieved by adopting methanol treatment, and the best efficiency of corresponding hybrid solar cells reaches 12.22%. X-ray photoelectron spectroscopy (XPS) and RAMAN spectroscopy were utilized to conform to component changes of PEDOT:PSS films after solvent treatment. It was found that the removal of the insulator PSS from the film and the conformational changes are the determinants for the device performance enhancement. Electrochemical impedance spectroscopy (EIS) was used to investigate the recombination resistance and capacitance of methanol-treated and untreated hybrid solar cells, indicating that methanol-treated devices had a larger recombination resistance and capacitance. Our findings bring a simple and efficient way for improving the performance of hybrid solar cell.

10.
Artigo em Chinês | MEDLINE | ID: mdl-23002541

RESUMO

OBJECTIVE: To determine the influences of Mannose binding protein (MBP) gene polymorphisms on HBV DNA loads and on the progression of liver disease in patients with chronic HBV infection. METHOD: The Codons on 54 MBP gene polymorphisms and HBV DNA loads in a cohort of 395 patients with chronic HBV infection, including 244 with chronic hepatitis B (CHB), 151 with liver cirrhosis (LC) and 88 normal controls were examined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and fluorescent quantitative PCR (FQ-PCR). RESULT: The MBP genotype frequencies of GGC/GAC and alleles genetic frequencies of GAC in CHB group showed no significant differences comparing to the normal control group (P > 0.05). The MBP genotype frequencies of GGC/GAC and alleles genetic frequencies of GAC on CHB group (severe), compensation phase of LC group and decompensation phase of LC group were higher than those in the normal control group (P < 0.05), the genetic polymorphism of decompensation of LC was 36.5%, highest of all. The MBP genotype frequencies of GGC/GAC and alleles genetic frequencies of GAC of patients with chronic HBV infection were not changed with the differences of HBV-DNA loads. CONCLUSION: The codes on 54 MBP gene polymorphisms is not closely related to HBV DNA loads, but was associated with the progression of hepatitis B infection.


Assuntos
DNA Viral/análise , Hepatite B Crônica/genética , Lectina de Ligação a Manose/genética , Polimorfismo Genético , Adolescente , Adulto , Idoso , Estudos de Coortes , Progressão da Doença , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa