Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Clin Oral Investig ; 26(3): 2441-2451, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34635946

RESUMO

OBJECTIVE: To investigate the antibiofilm and remineralising effects of the dual-action peptide GA-KR12 on artificial enamel caries. MATERIALS AND METHODS: Enamel blocks with artificial caries were treated with sterilised deionised water as control or GA-KR12. The blocks underwent biochemical cycling with Streptococcus mutans for 3 weeks. The architecture, viability, and growth kinetics of the biofilm were determined, respectively, by scanning electron microscopy (SEM), confocal laser scanning microscopy, and quantitative (culture colony-forming units, CFUs). The mineral loss, calcium-to-phosphorus ratio, surface morphology, and crystal characteristics of the enamel surface were determined, respectively, using micro-computed tomography, energy dispersive spectroscopy, SEM, and X-ray diffraction (XRD). RESULTS: SEM showed confluent growth of S. mutans in the control group but not in the GA-KR12-treated group. The dead-to-live ratios of the control and GA-KR12-treated groups were 0.42 ± 0.05 and 0.81 ± 0.08, respectively (p < 0.001). The log CFUs of the control and GA-KR12-treated groups were 8.15 ± 0.32 and 6.70 ± 0.49, respectively (p < 0.001). The mineral losses of the control and GA-KR12-treated groups were 1.39 ± 0.09 gcm-3 and 1.19 ± 0.05 gcm-3, respectively (p < 0.001). The calcium-to-phosphorus molar ratios of the control and GA-KR12-treated groups were 1.47 ± 0.03 and 1.57 ± 0.02, respectively (p < 0.001). A uniformly remineralised prismatic pattern on enamel blocks was observed in the GA-KR12-treated but not in the control group. The hydroxyapatite in the GA-KR12-treated group was better crystallised than that in the control group. CONCLUSION: The dual-action peptide GA-KR12 inhibited the growth of S. mutans biofilm and promoted the remineralisation of enamel caries. CLINICAL RELEVANCE: GA-KR12 potentially is applicable for managing enamel caries.


Assuntos
Suscetibilidade à Cárie Dentária , Cárie Dentária , Cárie Dentária/tratamento farmacológico , Esmalte Dentário , Humanos , Peptídeos/uso terapêutico , Streptococcus mutans , Microtomografia por Raio-X
2.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430289

RESUMO

The oral cavity is an environment with diverse bacteria; thus, antibacterial materials are crucial for treating and preventing dental diseases. There is a high demand for materials with an enamel-like architecture because of the high failure rate of dental restorations, due to the physical differences between dental materials and enamel. However, recreating the distinctive apatite composition and hierarchical architecture of enamel is challenging. The aim of this study was to synthesize a novel material with an enamel-like structure and antibacterial ability. We established a non-cell biomimetic method of evaporation-based bottom-up self-assembly combined with a layer-by-layer technique and introduced an antibacterial agent (graphene oxide) to fabricate a biofunctional material with an enamel-like architecture and antibacterial ability. Specifically, enamel-like graphene oxide-hydroxyapatite crystals, formed on a customized mineralization template, were assembled into an enamel-like prismatic structure with a highly organized orientation preferentially along the c-axis through evaporation-based bottom-up self-assembly. With the aid of layer-by-layer absorption, we then fabricated a bulk macroscopic multilayered biofunctional material with a hierarchical enamel-like architecture. This enamel-inspired biomaterial could effectively resolve the problem in dental restoration and brings new prospects for the synthesis of other enamel-inspired biomaterials.


Assuntos
Grafite , Apatitas , Materiais Biocompatíveis , Antibacterianos
3.
J Mater Sci Mater Med ; 30(4): 45, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30929087

RESUMO

Dental caries is primarily caused by pathogenic bacteria infection, and Streptococcus mutans is considered a major cariogenic pathogen. Moreover, antimicrobial peptides have been considered an alternative to traditional antibiotics in treating caries. This study aimed to design a tooth-binding antimicrobial peptide and evaluate its antimicrobial efficacy against S. mutans. An antimicrobial peptide of polyphemusin I (PI) was modified by grafting a tooth-binding domain of diphosphoserine (Ser(p)-Ser(p)-) to create the peptide of Ser(p)-Ser(p)-polyphemusin I (DPS-PI). PI and DPS-PI were synthesized by Fmoc solid-phase peptide synthesis. The minimum inhibitory concentration of PI and DPS-PI against S. mutans were tested. Scanning electron microscopy (SEM) were used to observe the growth of S. mutans on PI and DPS-PI treated enamel surfaces. The growth of S. mutans was evaluated by optical density (OD) at 590 nm. Inhibition of dental plaque biofilm development in vivo were investigated. The cytocompatibility to bone mesenchymal stem cells (BMSCs) was tested. The MIC of PI and DPS-PI were 40 and 80 µg/ml, respectively. SEM images showed that S. mutans were sparsely distributed on the DPS-PI treated enamel surface. OD findings indicated that DPS-PI maintained its inhibition effect on S. mutans growth after 24 h. The incisor surfaces of rabbits treated with DPS-PI developed significantly less dental plaque biofilm than that on PI treated surfaces. The DPS-PI had good biocompatibility with the cells. We successfully constructed a novel tooth-binding antimicrobial peptide against S. mutans in vitro and inhibited dental plaque biofilm development in vivo. DPS-PI may provide a feasible alternative to conventional antibiotics for the prevention and treatment of dental caries. Dental caries is primarily caused by pathogenic bacteria infection, and Streptococcus mutans is considered a major cariogenic pathogen. A tooth-binding antimicrobial peptide was designed by grafted diphosphoserine (-Ser(p)-Ser(p)-) to the structure of polyphemusin I. This novel tooth-binding antimicrobial peptide can inhibit dental plaque biofilm development and thus provide a feasible alternative to conventional antibiotics for the prevention and treatment of dental caries.


Assuntos
Anti-Infecciosos/metabolismo , Biofilmes/efeitos dos fármacos , Placa Dentária/prevenção & controle , Fragmentos de Peptídeos/metabolismo , Dente/metabolismo , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Anti-Infecciosos/farmacocinética , Bovinos , Cárie Dentária/microbiologia , Cárie Dentária/prevenção & controle , Placa Dentária/microbiologia , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Fragmentos de Peptídeos/farmacocinética , Ligação Proteica , Streptococcus mutans/efeitos dos fármacos , Propriedades de Superfície
4.
Int J Mol Sci ; 16(3): 4615-27, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25739078

RESUMO

This study aimed to review the laboratory methods on biomimetic remineralization of demineralized human dentine. A systematic search of the publications in the PubMed, TRIP, and Web of Science databases was performed. Titles and abstracts of initially identified publications were screened. Clinical trials, reviews, non-English articles, resin-dentine interface studies, hybrid layer studies, hybrid scaffolds studies, and irrelevant studies were excluded. The remaining papers were retrieved with full texts. Manual screening was conducted on the bibliographies of remaining papers to identify relevant articles. A total of 716 studies were found, and 690 were excluded after initial screening. Two articles were identified from the bibliographies of the remaining papers. After retrieving the full text, 23 were included in this systematic review. Sixteen studies used analogues to mimic the functions of non-collagenous proteins in biomineralization of dentine, and four studies used bioactive materials to induce apatite formation on demineralized dentine surface. One study used zinc as a bioactive element, one study used polydopamine, and another study constructed an agarose hydrogel system for biomimetic mineralization of dentine. Many studies reported success in biomimetic mineralization of dentine, including the use of non-collagenous protein analogues, bioactive materials, or elements and agarose hydrogel system.


Assuntos
Materiais Biomiméticos/farmacologia , Biomimética/métodos , Dentina/efeitos dos fármacos , Remineralização Dentária/métodos , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biomiméticos/química , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Cimentos Dentários/química , Cimentos Dentários/farmacologia , Dentina/química , Humanos
5.
BMC Biotechnol ; 14: 32, 2014 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-24766767

RESUMO

BACKGROUND: Researchers are looking for biomimetic mineralization of ena/mel to manage dental erosion. This study evaluated biomimetic mineralization of demineralized enamel induced by a synthetic and self-assembled oligopeptide amphiphile (OPA). RESULTS: The results showed that the OPA self-assembled into nano-fibres in the presence of calcium ions and in neutral acidity. The OPA was alternately immersed in calcium chloride and sodium hypophosphate solutions to evaluate its property of mineralization. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed nucleation and growth of amorphous calcium phosphate along the self-assembled OPA nano-fibres when it was repetitively exposed to solutions with calcium and phosphate ions. Energy dispersive spectrometry (EDS) confirmed that these nano-particles contained calcium and phosphate. Furthermore, electron diffraction pattern suggested that the nano-particles precipitated on OPA nano-fibres were comparable to amorphous calcium phosphate. Acid-etched human enamel slices were incubated at 37°C in metastable calcium phosphate solution with the OPA for biomimetic mineralization. SEM and X-ray diffraction indicated that the OPA induced the formation of hydroxyapatite crystals in organized bundles on etched enamel. TEM micrographs revealed there were 20-30 nm nano-amorphous calcium phosphate precipitates in the biomimetic mineralizing solution. The particles were found separately bound to the oligopeptide fibres. Biomimetic mineralization with or without the oligopeptide increased demineralized enamel microhardness. CONCLUSIONS: A novel OPA was successfully fabricated, which fostered the biomimetic mineralization of demineralized enamel. It is one of the primary steps towards the design and construction of novel biomaterial for future clinical therapy of dental erosion.


Assuntos
Biomimética , Esmalte Dentário/metabolismo , Oligopeptídeos/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanofibras/química , Oligopeptídeos/química , Ácidos Fosfínicos/química
6.
Clin Oral Investig ; 18(3): 873-81, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23912147

RESUMO

OBJECTIVE: The objectives were to design and fabricate an oligopeptide that simulates dentine matrix protein 1 (DMP1) to study its ability to bind to dentine collagen fibrils and induce biomimetic mineralization for the management of dentine hypersensitivity. MATERIALS AND METHODS: A novel oligopeptide was developed by connecting the collagen-binding domain of DMP1 to the hydrophilic C-terminal of amelogenin. Fluorescein isothiocyanate-coupled oligopeptide was applied to the completely demineralized dentine collagen and examined using fluorescent microscopy. The nucleation and growth of hydroxyapatite were initiated by immersing oligopeptide into calcium chloride and sodium hydrogen phosphate solutions. Scanning electron microscopy (SEM), transmission electron microscopy, and selected area electron diffraction (SAED) were used to examine the formation. Dentine slices were acid-etched, coated with oligopeptide, and immersed into a metastable calcium phosphate solution. Dentine mineralization was evaluated by SEM, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). RESULTS: Fluorescent dentine collagen was identified in the specimens. The nucleation and growth of crystals were detected after immersing the oligopeptide into calcium chloride and sodium hydrogen phosphate solutions. Under SEM, crystals were observed covering the oligopeptide-coated dentine surface, within the demineralized dentine collagen matrix and occluding dentinal tubules. SAED, XRD, and FTIR confirmed that the crystals were hydroxyapatite. CONCLUSION: A novel oligopeptide-simulating DMP1 was developed, that can bind to collagen fibrils, initiate mineralization, and induce biomimetic mineralization of dentine. CLINICAL RELEVANCE: Biomimetic mineralization of dentine facilitated by this oligopeptide is a potential therapeutic technique for the management of dentine hypersensitivity.


Assuntos
Biomimética , Dentina/metabolismo , Oligopeptídeos/metabolismo , Desmineralização do Dente , Humanos
7.
Dent Mater ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38821839

RESUMO

OBJECTIVE: Extrafibrillar demineralization is considered to be an ideal solution for addressing the durability of resin-dentin bonding interfaces. However, its theoretical basis is contradictory to ionization equilibrium of hydroxyapatite dissolution. In this study, various calcium chelators were selected as dentin conditioners to explore the essence of dentin demineralization with chelators and its effect on resin-dentin adhesion. METHODS: Polyethyleneimine grafted with EDTA and polyacrylic acid sodium (PAAN450k) larger than 40 kDa, as well as PAAN (PAAN3k) and EDTA smaller than 6 kDa, were prepared as dentin conditioners. The dentin powder was designed to characterize whether it would demineralize without contact with PAAN450k. Dentin demineralization effect with four conditioners was evaluated with field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, atomic force microscopy and quantification of hydroxyproline concentration after enzymatic degradation. Micro-tensile bond strength (µTBS) test and failure mode analysis were employed to assess the bonding effect of the four chelators in both wet and dry bonding, with H3PO4 wet bonding serving as the control group. RESULTS: Demineralization occurs when PAAN450k was not in direct contact with the dentin powder. The extrafibrillar demineralization cannot be induced by any chelator regardless of its molecular weight. Complete demineralization including extrafibrillar and intrafibrillar demineralization would occur with sufficient interaction time. Moreover, chelators could not provide a reliable dentin bonding effect under a short interaction time. SIGNIFICANCE: From the perspective of theory and application, extrafibrillar demineralization is not a reliable strategy, which provides a reminder for exploring new strategies in the future.

8.
Adv Healthc Mater ; : e2401095, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38794821

RESUMO

Enamel has good optical and mechanical properties because of its multiscale hierarchical structure. Biomimetic construction of enamel-like 3D bulk materials at nano-, micro-, mesh- and macro-levels is a challenge. A novel facile, cost-effective, and easy large-scale bottom-up assembly strategy to align 1D hydroxyapatite (HA) nanowires bundles to 3D hierarchical enamel structure with the nanowires bundles layer-by-layer interweaving orientation, is reported. In the strategy, the surface of oleate templated ultralong HA nanowires with a large aspect ratio is functionalized with amphiphilic 10-methacryloyloxydecyl dihydrogen phosphate (MDP). Furtherly, the MDP functionalized HA nanowire bundles are assembled layer-by-layer with oriented fibers in a single layer and cross-locked between layers at a certain angle at mesoscale and macroscale in the viscous bisphenol A-glycidyl methacrylate (Bis-GMA) ethanol solution by shear force induced by simple agitation and high-speed centrifugation. Finally, the excessive Bis-GMA and ethanol are removed, and (Bis-GMA)-(MDP-HA nanowire bundle) matrix is densely packed under hot pressing and polymerized to form bulk enamel-like materials. The composite has superior optical properties and comparable comprehensive mechanic performances through a combination of strength, hardness, toughness, and friction. This method may open new avenues for controlling the nanowires assembly to develop hierarchical nanomaterials with superior properties for many different applications.

9.
Ann Clin Microbiol Antimicrob ; 12: 4, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23442825

RESUMO

BACKGROUNDS: Silver diamine fluoride (SDF) has clinical success in arresting dentin caries, this study aimed to investigate its mechanism of action. METHODS: Using a computer-controlled artificial mouth, we studied the effect of 38% SDF on cariogenic biofilms and dentin carious lesions. We used five common cariogenic bacteria (Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, Lactobacillus rhamnosus and Actinomyces naeslundii) to form a cariogenic biofilm that generated carious lesions with a depth of approximately 70 um on human dentin blocks. We applied 38% SDF to the lesions in the test group and water to those in the control group. The blocks were incubated in the artificial mouth for 21 days before evaluation. Microbial kinetics, architecture, viability and distribution were evaluated every 7 days using colony forming unit (CFU), scanning electron microscopy and confocal laser scanning microscopy. The physical properties of the carious lesions were evaluated with microhardness testing, energy dispersive spectroscopy (EDS) and Fourier transform infra-red spectroscopy (FTIR). RESULTS: The CFU results revealed fewer colony forming units in the test group compared with the control group (p < 0.01). Scanning electron microscopy and confocal microscopy showed less bacterial growth in the test group, and confluent cariogenic biofilm in the control group (p < 0.01). The microhardness and weight percentages of calcium and phosphorus in the test group from the outermost 50mum were higher than in the control group (p < 0.05). EDS showed that calcium and phosphous were higher in outer 50 mum in test groups than in the control FTIR revealed less exposed collagen I in the test lesions compared with the control group (p < 0.01). CONCLUSIONS: 38% SDF inhibits multi-species cariogenic biofilm formation on dentin carious lesions and reduces the demineralization process.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cárie Dentária/microbiologia , Compostos de Amônio Quaternário/farmacologia , Actinomyces/efeitos dos fármacos , Cariostáticos/farmacologia , Contagem de Colônia Microbiana , Cárie Dentária/tratamento farmacológico , Dentina/efeitos dos fármacos , Dentina/microbiologia , Fluoretos Tópicos , Humanos , Lactobacillus acidophilus/efeitos dos fármacos , Lacticaseibacillus rhamnosus/efeitos dos fármacos , Microscopia Confocal , Compostos de Prata , Streptococcus mutans/efeitos dos fármacos , Streptococcus sobrinus/efeitos dos fármacos
10.
ACS Appl Mater Interfaces ; 15(33): 39127-39142, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37565782

RESUMO

Dentin bond interface stability is the key issue of dental adhesion in present clinical dentistry. The concept of selective extrafibrillar demineralization has opened a new way to maintain intrafibrillar minerals to prevent interface degradation. Here, using ultra-high-molecular-weight sodium polyacrylate [Carbopol (Carbo) > 40 kDa] as a calcium chelator, we challenge this concept and propose a protocol for reliable dentin dry bonding. The results of high-resolution transmission electron microscopy revealed periodic bands of 67 nm dentin collagen fibrils after Carbo etching, and the hydroxyproline concentration increasing with prolonged chelating time denied the concept of extrafibrillar demineralization. The results that wet and dry bonding with Carbo-based demineralization produced a weaker bond strength than the traditional phosphoric acid wet adhesion suggested that the Carbo-based demineralization is an unreliable adhesion strategy. A novel protocol of Er:YAG laser physical etching followed by Carbo chemical etching for dentin adhesion revealed that a micro-/nano-level rough, rigid, and non-collagen exposed dentin surface was produced, the micro-tensile bond strength was maintained after aging under dry and wet bonding modes, and in situ zymography and nanoleakage within the hybrid layers presented lower signals after aging. Cell culture in vitro and a rabbit deep dentin adhesion model in vivo proved that this protocol is safe and biocompatible. Taken together, the concept of extrafibrillar demineralization is limited and insufficient to use in the clinic. The strategy of Er:YAG laser physical etching followed by Carbo chemical etching for dentin adhesion produces a bonding effect with reliability, durability, and safety.


Assuntos
Lasers de Estado Sólido , Coelhos , Animais , Reprodutibilidade dos Testes , Dentina , Adesivos Dentinários/química , Resistência à Tração , Microscopia Eletrônica de Varredura , Teste de Materiais , Propriedades de Superfície
11.
Research (Wash D C) ; 6: 0101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37040295

RESUMO

The durability of the resin-dentin bonding interface is a key issue in clinical esthetic dentistry. Inspired by the extraordinary bioadhesive properties of marine mussels in a wet environment, we designed and synthetized N-2-(3,4-dihydroxylphenyl) acrylamide (DAA) according to the functional domain of mussel adhesive proteins. DAA's properties of collagen cross-linking, collagenase inhibition, inducing collagen mineralization in vitro, and as a novel prime monomer for clinical dentin adhesion use, its optimal parameters, and effect on the adhesive longevity and the bonding interface's integrity and mineralization, were evaluated in vitro and in vivo. The results showed that oxide DAA can inhibit the activity of collagenase and cross collagen fibers to improve the anti-enzymatic hydrolysis of collagen fibers and induce intrafibrillar and interfibrillar collagen mineralization. As a primer used in the etch-rinse tooth adhesive system, oxide DAA can improve the durability and integrity of the bonding interface by anti-degradation and mineralization of the exposed collagen matrix. Oxidized DAA (OX-DAA) is a promising primer for improving dentin durability; using 5% OX-DAA ethanol solution and treating the etched dentin surface for 30 s is the optimal choice when used as a primer in the etch-rinse tooth adhesive system.

12.
Bioact Mater ; 7: 491-503, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34466748

RESUMO

Conventional dental materials lack of the hierarchical architecture of enamel that exhibits excellent intrinsic-extrinsic mechanical properties. Moreover, restorative failures frequently occur due to physical and chemical mismatch between artificial materials and native dental hard tissue followed by recurrent caries which is caused by sugar-fermenting, acidogenic bacteria invasion of the defective cite. In order to resolve the limitations of the conventional dental materials, the aim of this study was to establish a non-cell-based biomimetic strategy to fabricate a novel bioactive material with enamel-like structure and antibacterial adhesion property. The evaporation-based, bottom-up and self-assembly method with layer-by-layer technique were used to form a large-area fluorapatite crystal layer containing antibacterial components. The multilayered structure was constructed by hydrothermal growth of the fluorapatite crystal layer and highly conformal adsorption to the crystal surface of a polyelectrolyte matrix film. Characterization and mechanical assessment demonstrated that the synthesized bioactive material resembled the native enamel in chemical components, mechanical properties and crystallographic structure. Antibacterial and cytocompatibility evaluation demonstrated that this material had the antibacterial adhesion property and biocompatibility. In combination with the molecular dynamics simulations to reveal the effects of variables on the crystallization mechanism, this study brings new prospects for the synthesis of enamel-inspired materials.

13.
ACS Appl Mater Interfaces ; 13(26): 31140-31152, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34156831

RESUMO

Existing single-functional agents against dental caries are inadequate in antibacterial performance or mineralization balance. This problem can be resolved through a novel strategy, namely, the construction of an antibiofouling and mineralizing dual-bioactive tooth surface by grafting a dentotropic moiety to an antimicrobial peptide. The constructed bioactive peptide can strongly adsorb onto the tooth surface and has beneficial functions in a myriad of ways. It inhibits cariogenic bacteria Streptococcus mutans adhesion, kills planktonic S. mutans, and destroys the S. mutans biofilm on the tooth surface. It also protects teeth from demineralization in acidic environments, and induces self-healing regeneration in the remineralization environment. Molecular dynamics simulations elucidate the main adsorption mechanism that the positively charged amino acid residues in the bioactive peptide bind to phosphate groups on the tooth surface, and the main mineralization mechanism that the negative charges on the outermost layer of the bioactive peptide repel acetic acid ions and attract calcium ions as nucleation sites for remineralization. This study suggests that this in-house synthesized dual-bioactive peptide is a promising functional agent to prevent dental caries, and is effective in inducing in situ self-healing remineralization for the treatment of decayed teeth.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Adsorção , Antibacterianos/química , Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Estabilidade de Medicamentos , Humanos , Hidroxiapatitas/química , Hidroxiapatitas/metabolismo , Testes de Sensibilidade Microbiana , Dente Serotino/química , Dente Serotino/microbiologia , Simulação de Dinâmica Molecular , Ligação Proteica , Saliva/metabolismo , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia , Desmineralização do Dente/prevenção & controle , Remineralização Dentária
14.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(6): 667-674, 2021 Dec 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34859626

RESUMO

OBJECTIVES: This study was performed to evaluate the occlusion of monetite paste on dentine tubule and provide a new potential method for treating dentine hypersensitivity. METHODS: Calcium oxide, strontium chloride, and polyethylene glycol phosphate were mixed in a certain proportion and ground in a planetary ball mill. The reaction was carried out by adjusting the pH to obtain monetite and hydroxyapatite paste. The morphological characteristics of the paste were observed through scanning electron microscope (SEM). The structure and composition were analyzed through X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FTIR). The extracted third molar was selected to undergo demineralization to establish the in vitro study model of dentin hypersensitivity. The samples were randomly divided into four groups: blank control group (treated with distilled water), casein peptide phosphate-amorphic calcium phosphate (CPP-ACP) group, monetite paste group, and hydroxyapatite paste group. Each group was used to scrub the dentin surface with the corresponding materials for 7 days. The morphological characteristics of the dentin surface and section were observed through SEM, the microhardness of the dentin before and after mineralization was analyzed with a microhardness tester, and the composition of the deposits on the surface of the mineralized samples was examined through XRD. RESULTS: XRD and FTIR showed that the composition of the paste was mainly monetite, and the composition of hydroxyapatite paste was mainly composed of hydroxyapatite. SEM revealed that the size of the crystal particles of the synthesized paste was tens to hundreds of nanometers. Monetite and hydroxyapatite paste could produce a thicker mineralization layer on the dentin surface, and the mineralization of the dentin tubules of monetite was deeper than that of hydroxyapatite paste. The microhardness of the monetite paste group was significantly less than those of the hydroxyapatite paste groups (P<0.05). CONCLUSIONS: Monetite paste could effectively block the exposed dentin tubules and be used for treating dentin hypersensitivity.


Assuntos
Sensibilidade da Dentina , Dentina , Fosfatos de Cálcio , Durapatita , Humanos , Microscopia Eletrônica de Varredura
15.
Arch Oral Biol ; 122: 105022, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33418434

RESUMO

The objective of this study was to perform a comprehensive review of the use of antimicrobial peptides for the prevention and treatment of dental caries. The study included publications in the English language that addressed the use of antimicrobial peptides in the prevention and treatment of caries. These publications were also searchable on PubMed, Web of Science, Embase, Scopus, the Collection of Anti-Microbial Peptides and the Antimicrobial Peptide Database. A total of 3,436 publications were identified, and 67 publications were included. Eight publications reported seven natural human antimicrobial peptides as bactericidal to Streptococcus mutans. Fifty-nine publications reported 43 synthetic antimicrobial peptides developed to mimic natural antimicrobial peptides, fusing peptides with functional sequences and implementing new designs. The 43 synthetic antimicrobial peptides were effective against Streptococcus mutans, and nine peptides specifically targeted Streptococcus mutans. Ten antimicrobial peptides had an affinity for hydroxyapatite to prevent bacterial adhesion. Six antimicrobial peptides were also antifungal. Four antimicrobial peptides promoted remineralisation or prevented the demineralisation of teeth by binding calcium to hydroxyapatite. In conclusion, this study identified 67 works in the literature that reported seven natural and 43 synthetic antimicrobial peptides for the prevention and treatment of caries. Most of the antimicrobial peptides were bactericidal, and some prevented bacterial adhesion. A few antimicrobial peptides displayed remineralising properties with hydroxyapatite.


Assuntos
Antibacterianos/uso terapêutico , Cárie Dentária , Proteínas Citotóxicas Formadoras de Poros/uso terapêutico , Aderência Bacteriana/efeitos dos fármacos , Biofilmes , Cárie Dentária/tratamento farmacológico , Cárie Dentária/prevenção & controle , Durapatita , Humanos , Streptococcus mutans/efeitos dos fármacos , Remineralização Dentária
16.
J Dent ; 111: 103736, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34175452

RESUMO

OBJECTIVE: To investigate the antibacterial and remineralising effects of a novel dual-action antimicrobial peptide, GA-KR12, on artificial dentine caries. METHODS: Human dentine blocks with artificial carious lesions were allocated to two groups - Group 1: dentine blocks treated with the novel antimicrobial peptide GA-KR12 twice daily; Group 2: dentine blocks received water as the negative control. Two groups underwent Streptococcus mutan biofilm-remineralisation cycles at 37 °C for 7 days. The morphology, viability and growth kinetics of the S. mutans biofilm were evaluated by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and colony-forming unit (CFU) counting, respectively. The dentine blocks' lesion depths and mineral loss, changes in chemical structure, dentine surface morphology and crystal characteristics were determined using micro-computed tomography, Fourier transform infrared (FTIR), SEM and X-ray diffraction (XRD), respectively. RESULTS: The surface of the dentine blocks in Group 1 was partially covered by S. mutans with damaged cell structure. Group 2 showed affluent growth of S. mutans covering the dentine surface when compared to Group 1. The dead-to-live ratio of Group 1 and Group 2 were 0.78 ± 0.01 and 0.47 ± 0.08, respectively (p < 0.001). The Log CFUs of Group 1 and Group 2 were 7.14 ± 0.30 and 8.24 ± 0.20, respectively (p < 0.001). The lesion depths of Group 1 and Group 2 were 109 ± 1 µm and 135 ± 3 µm, respectively (p < 0.001). The mineral loss of Group 1 and Group 2 were 0.59 ± 0.08 gHApcm-3 and 0.81 ± 0.07 gHApcm-3, respectively (p < 0.001). FTIR showed the amide I-to-hydrogen phosphate (HPO42-) ratios of Group 1 and Group 2 were 0.25 ± 0.05 and 0.39 ± 0.05 (p < 0.001), respectively. SEM images showed Group 1 had less exposed dentine collagen fibres than Group 2. The XRD revealed that the hydroxyapatite in Group 1 was well crystalised. CONCLUSION: This study demonstrated that the novel antimicrobial peptide GA-KR12 inhibited the growth of S. mutans biofilm and enhanced the remineralisation of artificial dentine caries.


Assuntos
Suscetibilidade à Cárie Dentária , Cárie Dentária , Biofilmes , Cárie Dentária/tratamento farmacológico , Dentina , Humanos , Proteínas Citotóxicas Formadoras de Poros , Compostos de Prata , Streptococcus mutans , Microtomografia por Raio-X
17.
J Dent ; 111: 103729, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34146653

RESUMO

OBJECTIVES: To develop a novel dual-action peptide with antimicrobial and mineralising properties. METHODS: A novel peptide, namely GA-KR12, was synthesised through grafting gallic acid to KR12. The secondary structure of GA-KR12 was evaluated by circular dichroism spectroscopy. The stability was evaluated by high-performance liquid chromatography. The cytotoxicity was evaluated by a mitochondrial dehydrogenase activity assay. The antimicrobial properties against common cariogenic species were evaluated by minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). The morphology of cariogenic species was analysed by transmission electron microscope (TEM). To assess the mineralising effect of GA-KR12 on enamel, the lesion depths, mineral loss, surface morphology, calcium-to-phosphorus ratio and crystal characteristics were determined using micro-computed tomography, scanning electron microscopy (SEM) and energy dispersive spectroscopy X-ray diffraction, respectively. RESULTS: GA-KR12 did not exhibit cytotoxicity against HGF. Around 82% of the GA-KR12 remained in human saliva at 37°C for 1 h. The MIC and MBC/MFC against the tested species were 10-320 µM and 20-1,280 µM, respectively. GA-KR12 induced remarkable morphological defects in the tested species. The enamel treated with GA-KR12 had smaller lesion depths (p < 0.001), less mineral loss (p < 0.001) and higher calcium-to-phosphorus molar ratios (p < 0.001) than those in the enamel treated with water. SEM showed a well-organised prism pattern in enamel treated with GA-KR12. X-ray diffraction revealed that the hydroxyapatite on the enamel treated with GA-KR12 was better crystalised. CONCLUSIONS: This study developed a biocompatible and stable peptide which inhibited the growth of cariogenic species and mineralised the enamel caries. CLINICAL SIGNIFICANCE: The novel dual-action peptide, GA-KR12, is potential applicable in the management of caries.


Assuntos
Suscetibilidade à Cárie Dentária , Cárie Dentária , Cárie Dentária/tratamento farmacológico , Esmalte Dentário , Humanos , Microscopia Eletrônica de Varredura , Proteínas Citotóxicas Formadoras de Poros , Microtomografia por Raio-X
18.
Mol Oral Microbiol ; 36(3): 159-171, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33721398

RESUMO

Antimicrobial peptides are naturally occurring protein molecules with antibacterial, antiviral and/or antifungal activity. Some antimicrobial peptides kill microorganisms through direct binding with negatively charged microbial surfaces. This action disrupts the cytoplasmic membrane and leads to the leakage of the cytoplasm. In addition, they are involved in the innate immune response. Antimicrobial peptides play an important role in oral health, as natural antimicrobial peptides are the first line of host defence in response to microbial infection. The level of natural antimicrobial peptides increases during severe disease conditions and play a role in promoting the healing of oral tissues. However, they are insufficient for eliminating pathogenic micro-organisms. The variability of the oral environment can markedly reduce the effect of natural antimicrobial peptides. Thus, researchers are developing synthetic antimicrobial peptides with promising stability and biocompatibility. Synthetic antimicrobial peptides are a potential alternative to traditional antimicrobial therapy. Pertinent to oral diseases, the deregulation of antimicrobial peptides is involved in the pathogenesis of dental caries, periodontal disease, mucosal disease and oral cancer, where they can kill pathogenic microorganisms, promote tissue healing, serve as biomarkers and inhibit tumor cells. This narrative review provides an overview of the multifaceted roles of antimicrobial peptides in oral diseases.


Assuntos
Anti-Infecciosos , Cárie Dentária , Doenças Periodontais , Antibacterianos , Anti-Infecciosos/farmacologia , Humanos , Proteínas Citotóxicas Formadoras de Poros
19.
ACS Appl Mater Interfaces ; 13(33): 39142-39156, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433244

RESUMO

The reconstruction of the intra/interfibrillar mineralized collagen microstructure is extremely important in biomaterial science and regeneration medicine. However, certain problems, such as low efficiency and long period of mineralization, are apparent, and the mechanism of interfibrillar mineralization is often neglected in the present literature. Thus, we propose a novel model of biomimetic collagen mineralization that uses molecules with the dual function of cross-linking collagen and regulating collagen mineralization to construct the intrafibrillar and interfibrillar collagen mineralization of the structure of mineralized collagen hard tissues. In the present study completed in vitro, N-2-(3,4-dihydroxyphenyl) acrylamide (DAA) is used to bind and cross-link collagen molecules and further stabilize the self-assembled collagen fibers. The DAA-collagen complex provides more affinity with calcium and phosphate ions, which can reduce the calcium phosphate/collagen interfacial energy to promote hydroxyapatite (HA) nucleation and accelerate the rate of collagen fiber mineralization. Besides inducing intrafibrillar mineralization, the DAA-collagen complex mineralization template can realize interfibrillar mineralization with the c-axis of the HA crystal on the surface of collagen fibers and between fibers that are parallel to the long axis of collagen fibers. The DAA-collagen complex, as a new type of mineralization template, may provide a new collagen mineralization strategy to produce a mineralized scaffold material for tissue engineering or develop bone-like materials.


Assuntos
Acrilamida/química , Materiais Biomiméticos/química , Colágeno/química , Dopamina/química , Osso e Ossos , Cálcio/química , Cálcio/metabolismo , Fosfatos de Cálcio/química , Reagentes de Ligações Cruzadas/química , Cristalização , Durapatita/química , Durapatita/metabolismo , Matriz Extracelular/metabolismo , Humanos , Simulação de Dinâmica Molecular , Polimerização , Medicina Regenerativa , Propriedades de Superfície , Engenharia Tecidual
20.
Dent Mater ; 37(10): 1498-1510, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34465445

RESUMO

OBJECTIVE: Resin-based dental adhesion is mostly utilized in minimally invasive operative dentistry. However, improving the durability and stability of resin-dentin bond interfaces remain a challenge. Graphene quantum dots (GQDs) reinforced by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were introduced to modify the resin-dentin bond interfaces, thereby promoting their durability and stability. METHODS: GQDs, EDC, and EDC+GQDs groups were designed to evaluate the effects of GQDs and EDC on collagenase activity, the interaction of GQDs with collagen, and the resin-dentin interface. First, the effects of GQDs and EDC on collagenase activity was evaluated by Collagenase (EC 3.4.24.3) reacting with its substrate. The interaction of GQDs and EDC with collagen were evaluated by cross-linking degree analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, attenuated total reflection Fourier transform infrared spectroscopy and enzymatic hydrolysis. Second, the acid-etched and rinse adhesive system was used to evaluate the resin-dentin bond on the basis of microtensile bond strength, in situ zymography and fluorescence confocal laser scanning microscopy. RESULTS: GQDs could inhibit collagenase activity. GQDs with the aid of EDC could cross-link collagen via covalent bonds and improve the anti-enzymatic hydrolysis of collagen. In the resin-dentin adhesion model, the µTBS of the EDC+GQDs group was significantly higher than the other control groups after thermocycling. The addition of EDC to GQDs could inhibit matrix metalloproteinase activity and promote the integrity of the bonding interfaces after thermocycling. SIGNIFICANCE: This study presents a novel strategy to modify the resin-dentin interface and provides a new application for GQDs. This strategy has the potential to improve the durability of resin-based restoration in dentistry.


Assuntos
Colagem Dentária , Grafite , Pontos Quânticos , Carbodi-Imidas , Dentina , Adesivos Dentinários , Teste de Materiais , Cimentos de Resina , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa