Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.878
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 53(1): 204-216.e10, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32553276

RESUMO

Psoriasis is a chronic inflammatory disease whose etiology is multifactorial. The contributions of cellular metabolism to psoriasis are unclear. Here, we report that interleukin-17 (IL-17) downregulated Protein Phosphatase 6 (PP6) in psoriatic keratinocytes, causing phosphorylation and activation of the transcription factor C/EBP-ß and subsequent generation of arginase-1. Mice lacking Pp6 in keratinocytes were predisposed to psoriasis-like skin inflammation. Accumulation of arginase-1 in Pp6-deficient keratinocytes drove polyamine production from the urea cycle. Polyamines protected self-RNA released by psoriatic keratinocytes from degradation and facilitated the endocytosis of self-RNA by myeloid dendritic cells to promote toll-like receptor-7 (TLR7)-dependent RNA sensing and IL-6 production. An arginase inhibitor improved skin inflammation in murine and non-human primate models of psoriasis. Our findings suggest that urea cycle hyperreactivity and excessive polyamine generation in psoriatic keratinocytes promote self-RNA sensation and PP6 deregulation in keratinocytes is a pivotal event that amplifies the inflammatory circuits in psoriasis.


Assuntos
Células Dendríticas/imunologia , Queratinócitos/metabolismo , Fosfoproteínas Fosfatases/deficiência , Poliaminas/metabolismo , Psoríase/patologia , RNA/imunologia , Células 3T3 , Animais , Arginase/antagonistas & inibidores , Arginase/metabolismo , Arginina/metabolismo , Autoantígenos/imunologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Células HaCaT , Humanos , Interleucina-17/metabolismo , Macaca fascicularis , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas Fosfatases/genética , Fosforilação , Pele/patologia , Receptor 7 Toll-Like/imunologia
2.
Mol Cell ; 74(5): 996-1009.e7, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-30975460

RESUMO

Nucleotide-binding site leucine-rich repeat (NLR) receptors perceive pathogen effectors and trigger plant immunity. However, the mechanisms underlying NLR-triggered defense responses remain obscure. The recently discovered Pigm locus in rice encodes a cluster of NLRs, including PigmR, which confers broad-spectrum resistance to blast fungus. Here, we identify PIBP1 (PigmR-INTERACTING and BLAST RESISTANCE PROTEIN 1), an RRM (RNA-recognition motif) protein that specifically interacts with PigmR and other similar NLRs to trigger blast resistance. PigmR-promoted nuclear accumulation of PIBP1 ensures full blast resistance. We find that PIBP1 and a homolog, Os06 g02240, bind DNA and function as unconventional transcription factors at the promoters of the defense genes OsWAK14 and OsPAL1, activating their expression. Knockout of PIBP1 and Os06 g02240 greatly attenuated blast resistance. Collectively, our study discovers previously unappreciated RRM transcription factors that directly interact with NLRs to activate plant defense, establishing a direct link between transcriptional activation of immune responses with NLR-mediated pathogen perception.


Assuntos
Resistência à Doença/genética , Proteínas NLR/genética , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sítios de Ligação , Fungos/patogenicidade , Regulação da Expressão Gênica de Plantas , Oryza/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Regiões Promotoras Genéticas , Ligação Proteica/genética , Transdução de Sinais/genética
3.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37997706

RESUMO

Sperm with normal morphology and motility are essential for successful fertilization, and the strong attachment of the sperm head-tail coupling apparatus to the nuclear envelope during spermatogenesis is required to ensure the integrity of sperm for capacitation and fertilization. Here, we report that Arrdc5 is associated with spermatogenesis. The Arrdc5 knockout mouse model showed male infertility characterized by a high bent-head rate and reduced motility in sperm, which led to capacitation defects and subsequent fertilization failure. Through mass spectrometry, we found that ARRDC5 affects spermatogenesis by affecting NDC1 and SUN5. We further found that ARRDC5 might affect the vesicle-trafficking protein SEC22A-mediated transport and localization of NDC1, SUN5 and other head-tail coupling apparatus-related proteins that are responsible for initiating the attachment of the sperm head and tail. We finally performed intracytoplasmic sperm injection as a way to explore therapeutic strategies. Our findings demonstrate the essential role and the underlying molecular mechanism of ARRDC5 in anchoring the sperm head to the tail during spermatogenesis.


Assuntos
Infertilidade Masculina , Sêmen , Humanos , Animais , Camundongos , Masculino , Sêmen/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Cabeça do Espermatozoide/metabolismo , Proteínas/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Camundongos Knockout , Proteínas de Membrana/metabolismo
4.
Development ; 150(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37218508

RESUMO

The accumulation and storage of maternal mRNA is crucial for oocyte maturation and embryonic development. PATL2 is an oocyte-specific RNA-binding protein, and previous studies have confirmed that PATL2 mutation in humans and knockout mice cause oocyte maturation arrest or embryonic development arrest, respectively. However, the physiological function of PATL2 in the process of oocyte maturation and embryonic development is largely unknown. Here, we report that PATL2 is highly expressed in growing oocytes and couples with EIF4E and CPEB1 to regulate maternal mRNA expression in immature oocytes. The germinal vesicle oocytes from Patl2-/- mice exhibit decreasing maternal mRNA expression and reduced levels of protein synthesis. We further confirmed that PATL2 phosphorylation occurs in the oocyte maturation process and identified the S279 phosphorylation site using phosphoproteomics. We found that the S279D mutation decreased the protein level of PATL2 and led to subfertility in Palt2S279D knock-in mice. Our work reveals the previously unrecognized role of PATL2 in regulating the maternal transcriptome and shows that phosphorylation of PATL2 leads to the regulation of PATL2 protein levels via ubiquitin-mediated proteasomal degradation in oocytes.


Assuntos
Fator de Iniciação 4E em Eucariotos , Proteínas Nucleares , RNA Mensageiro Estocado , Proteínas de Ligação a RNA , Animais , Feminino , Humanos , Camundongos , Gravidez , Fator de Iniciação 4E em Eucariotos/metabolismo , Homeostase , Camundongos Knockout , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro Estocado/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
5.
J Immunol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856632

RESUMO

Psoriasis is a common inflammatory skin disorder with no cure. Mesenchymal stem cells (MSCs) have immunomodulatory properties for psoriasis, but the therapeutic efficacies varied, and the molecular mechanisms were unknown. In this study, we improved the efficacy by enhancing the immunomodulatory effects of umbilical cord-derived MSCs (UC-MSCs). UC-MSCs stimulated by TNF-α and IFN-γ exhibited a better therapeutic effect in a mouse model of psoriasis. Single-cell RNA sequencing revealed that the stimulated UC-MSCs overrepresented a subpopulation expressing high tryptophanyl-tRNA synthetase 1 (WARS1). WARS1-overexpressed UC-MSCs treat psoriasis-like skin inflammation more efficiently than control UC-MSCs by restraining the proinflammatory macrophages. Mechanistically, WARS1 maintained a RhoA-Akt axis and governed the immunomodulatory properties of UC-MSCs. Together, we identify WARS1 as a master regulator of UC-MSCs with enhanced immunomodulatory capacities, which paves the way for the directed modification of UC-MSCs for escalated therapeutic efficacy.

6.
Proc Natl Acad Sci U S A ; 120(24): e2108118120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276386

RESUMO

Nucleic acids can undergo conformational changes upon binding small molecules. These conformational changes can be exploited to develop new therapeutic strategies through control of gene expression or triggering of cellular responses and can also be used to develop sensors for small molecules such as neurotransmitters. Many analytical approaches can detect dynamic conformational change of nucleic acids, but they need labeling, are expensive, and have limited time resolution. The nanopore approach can provide a conformational snapshot for each nucleic acid molecule detected, but has not been reported to detect dynamic nucleic acid conformational change in response to small -molecule binding. Here we demonstrate a modular, label-free, nucleic acid-docked nanopore capable of revealing time-resolved, small molecule-induced, single nucleic acid molecule conformational transitions with millisecond resolution. By using the dopamine-, serotonin-, and theophylline-binding aptamers as testbeds, we found that these nucleic acids scaffolds can be noncovalently docked inside the MspA protein pore by a cluster of site-specific charged residues. This docking mechanism enables the ion current through the pore to characteristically vary as the aptamer undergoes conformational changes, resulting in a sequence of current fluctuations that report binding and release of single ligand molecules from the aptamer. This nanopore tool can quantify specific ligands such as neurotransmitters, elucidate nucleic acid-ligand interactions, and pinpoint the nucleic acid motifs for ligand binding, showing the potential for small molecule biosensing, drug discovery assayed via RNA and DNA conformational changes, and the design of artificial riboswitch effectors in synthetic biology.


Assuntos
Aptâmeros de Nucleotídeos , Nanoporos , Riboswitch , Ligantes , Conformação de Ácido Nucleico , RNA , Aptâmeros de Nucleotídeos/química
7.
Development ; 149(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36052695

RESUMO

Stomata are epidermal pores that control gas exchange between plants and the atmosphere. In Arabidopsis, the ERECTA family (ERECTAf) receptors, including ERECTA, ERECTA-LIKE 1 (ERL1) and ERL2, redundantly play pivotal roles in enforcing the 'one-cell-spacing' rule. Accumulating evidence has demonstrated that the functional specificities of receptors are likely associated with their differential subcellular dynamics. The endoplasmic reticulum (ER)-resident chaperone complex SDF2-ERdj3B-BiP functions in many aspects of plant development. We employed pharmacological treatments combined with cell biological and biochemical approaches to demonstrate that the abundance of ERECTA was reduced in the erdj3b-1 mutant, but the localization and dynamics of ERECTA were not noticeably affected. By contrast, the erdj3b mutation caused the retention of ERL1/ERL2 in the ER. Furthermore, we found that the function of SDF2-ERdj3B-BiP is implicated with the distinct roles of ERECTAf receptors. Our findings establish that the ERECTAf receptor-mediated signaling in stomatal development is ensured by the activities of the ER quality control system, which preferentially maintains the protein abundance of ERECTA and proper subcellular dynamics of ERL1/ERL2, prior to the receptors reaching their destination - the plasma membrane - to execute their functions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Serina-Treonina Quinases , Receptores de Superfície Celular/genética
8.
Plant Cell ; 34(1): 579-596, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34735009

RESUMO

The self-incompatibility (SI) system with the broadest taxonomic distribution in angiosperms is based on multiple S-locus F-box genes (SLFs) tightly linked to an S-RNase termed type-1. Multiple SLFs collaborate to detoxify nonself S-RNases while being unable to detoxify self S-RNases. However, it is unclear how such a system evolved, because in an ancestral system with a single SLF, many nonself S-RNases would not be detoxified, giving low cross-fertilization rates. In addition, how the system has been maintained in the face of whole-genome duplications (WGDs) or lost in other lineages remains unclear. Here we show that SLFs from a broad range of species can detoxify S-RNases from Petunia with a high detoxification probability, suggestive of an ancestral feature enabling cross-fertilization and subsequently modified as additional SLFs evolved. We further show, based on its genomic signatures, that type-1 was likely maintained in many lineages, despite WGD, through deletion of duplicate S-loci. In other lineages, SI was lost either through S-locus deletions or by retaining duplications. Two deletion lineages regained SI through type-2 (Brassicaceae) or type-4 (Primulaceae), and one duplication lineage through type-3 (Papaveraceae) mechanisms. Thus, our results reveal a highly dynamic process behind the origin, maintenance, loss, and regain of SI.


Assuntos
Evolução Biológica , Células Germinativas Vegetais/fisiologia , Magnoliopsida/fisiologia , Autoincompatibilidade em Angiospermas , Autoincompatibilidade em Angiospermas/genética
9.
Plant Cell ; 34(10): 3665-3684, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35897146

RESUMO

The endoplasmic reticulum-localized DnaJ family 3B (ERdj3B), is a component of the stromal cell-derived factor 2 (SDF2)-ERdj3B-binding immunoglobulin protein (BiP) chaperone complex, which functions in protein folding, translocation, and quality control. We found that ERdj3B mutations affected integument development in the Ler ecotype but not in the Col-0 ecotype of Arabidopsis (Arabidopsis thaliana). Map-based cloning identified the ERECTA (ER) gene as a natural modifier of ERdj3B. The double mutation of ERdj3B and ER caused a major defect in the inner integument under heat stress. Additional mutation of the ER paralog ERECTA-LIKE 1 (ERL1) or ERL2 to the erdj3b er double mutant exacerbated the defective integument phenotype. The double mutation of ER and SDF2, the other component of the SDF2-ERdj3B-BiP complex, resulted in similar defects in the inner integument. Furthermore, both the protein abundance and plasma membrane partitioning of ER, ERL1, and ERL2 were markedly reduced in erdj3b plants, indicating that the SDF2-ERdj3B-BiP chaperone complex might control the translocation of ERECTA-family proteins from the endoplasmic reticulum to the plasma membrane. Our results suggest that the SDF2-ERdj3B-BiP complex functions in ovule development and the heat stress response in coordination with ERECTA-family receptor kinases.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Resposta ao Choque Térmico , Óvulo Vegetal/metabolismo , Proteínas Serina-Treonina Quinases
10.
Brain ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739753

RESUMO

Human brain organoids represent a remarkable platform for modeling neurological disorders and a promising brain repair approach. However, the effects of physical stimulation on their development and integration remain unclear. Here, we report that low-intensity ultrasound significantly increases neural progenitor cell proliferation and neuronal maturation in cortical organoids. Histological assays and single-cell gene expression analyses reveal that low-intensity ultrasound improves the neural development in cortical organoids. Following organoid grafts transplantation into the injured somatosensory cortices of adult mice, longitudinal electrophysiological recordings and histological assays reveal that ultrasound-treated organoid grafts undergo advanced maturation. They also exhibit enhanced pain-related gamma-band activity and more disseminated projections into the host brain than the untreated groups. Finally, low-intensity ultrasound ameliorates neuropathological deficits in a microcephaly brain organoid model. Hence, low-intensity ultrasound stimulation advances the development and integration of brain organoids, providing a strategy for treating neurodevelopmental disorders and repairing cortical damage.

11.
Cell Mol Life Sci ; 81(1): 174, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597936

RESUMO

Mature spermatozoa with normal morphology and motility are essential for male reproduction. The epididymis has an important role in the proper maturation and function of spermatozoa for fertilization. However, factors related to the processes involved in spermatozoa modifications are still unclear. Here we demonstrated that CCDC28A, a member of the CCDC family proteins, is highly expressed in testes and the CCDC28A deletion leads to male infertility. We found CCDC28A deletion had a mild effect on spermatogenesis. And epididymal sperm collected from Ccdc28a-/- mice showed bent sperm heads, acrosomal defects, reduced motility and decreased in vitro fertilization competence whereas their axoneme, outer dense fibers, and fibrous sheath were all normal. Furthermore, we found that CCDC28A interacted with sperm acrosome membrane-associated protein 1 (SPACA1) and glycogen synthase kinase 3a (GSK3A), and deficiencies in both proteins in mice led to bent heads and abnormal acrosomes, respectively. Altogether, our results reveal the essential role of CCDC28A in regulating sperm morphology and motility and suggesting a potential marker for male infertility.


Assuntos
Infertilidade Masculina , Motilidade dos Espermatozoides , Masculino , Animais , Camundongos , Humanos , Motilidade dos Espermatozoides/genética , Sêmen , Infertilidade Masculina/genética , Cabeça do Espermatozoide , Espermatozoides
12.
J Am Chem Soc ; 146(1): 159-169, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38159061

RESUMO

Flash Joule heating of highly porous graphene oxide (GO) aerogel monoliths to ultrahigh temperatures is exploited as a low carbon footprint technology to engineer functional aerogel materials. Aerogel Joule heating to up to 3000 K is demonstrated for the first time, with fast heating kinetics (∼300 K·min-1), enabling rapid and energy-efficient flash heating treatments. The wide applicability of ultrahigh-temperature flash Joule heating is exploited in a range of material fabrication challenges. Ultrahigh-temperature Joule heating is used for rapid graphitic annealing of hydrothermal GO aerogels at fast time scales (30-300 s) and substantially reduced energy costs. Flash aerogel heating to ultrahigh temperatures is exploited for the in situ synthesis of ultrafine nanoparticles (Pt, Cu, and MoO2) embedded within the hybrid aerogel structure. The shockwave heating approach enables high through-volume uniformity of the formed nanoparticles, while nanoparticle size can be readily tuned through controlling Joule-heating durations between 1 and 10 s. As such, the ultrahigh-temperature Joule-heating approach introduced here has important implications for a wide variety of applications for graphene-based aerogels, including 3D thermoelectric materials, extreme temperature sensors, and aerogel catalysts in flow (electro)chemistry.

13.
Clin Immunol ; 258: 109859, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065368

RESUMO

The pathogenic anti-citrullinated protein antibodies (ACPA) are thought to play a vital role in the initiation and immune maintenance of rheumatoid arthritis (RA). However, it is noteworthy that ACPA is not a salient characteristic of any conventional RA animal model. Porphyromonas gingivalis (Pg) is the first microorganism identified to induce citrullination and a target of autoantibodies in early rheumatoid arthritis (RA). Thus, we employed C3H mice with specific MHC types and combined Pg infection with collagen immunity to develop an animal model of ACPA-positive RA. The resulting model exhibited citrullination characteristics, as well as pathological and immune cell changes. 1) Mice showed a significant increase in ACPA levels, and various organs and tissues exhibited elevated levels of citrullinated protein. 2) The mice experienced heightened pain, inflammation, and bone destruction. 3) The spleen and lymph nodes of the mice showed a significant increase in the proportion of Tfh-GCB cell subpopulations responsible for regulating autoantibody production. In conclusion, the C3H mouse model of Pg infection with collagen immunity demonstrated significant alterations in ACPA levels, citrullinated protein expression, and immune cell subpopulations, which could be a crucial factor leading to increased pain, inflammation, and bone destruction.


Assuntos
Artrite Reumatoide , Porphyromonas gingivalis , Animais , Camundongos , Camundongos Endogâmicos C3H , Autoanticorpos , Imunização , Inflamação , Colágeno , Dor
14.
Small ; 20(8): e2303473, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37840383

RESUMO

Hierarchical porous materials have attracted the attention of researchers due to their enormous specific surface area, maximized active site utilization efficiency, and unique structure and properties. In this context, metal-organic frameworks (MOFs) offer a unique mix of properties that make them particularly appealing as tunable porous substrates containing highly active sites. This review focuses on recent advances in the types and synthetic strategies of hierarchical porous MOFs and their derived materials. Furthermore, it highlights the relationship between the mass diffusion and transport of hierarchical porous structures and the pore size with examples and simulations, while identifying their potential and limitations. On this basis, how the synthesis conditions affect the structure and electrochemical properties of MOFs based hierarchical porous materials with different structures is discussed, highlighting the prospects and challenges for the synthetization, as well as further scientific research and practical applications. Finally, some insights into current research and future design ideas for advanced MOFs based hierarchical porous materials are presented.

15.
J Med Virol ; 96(5): e29640, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38699969

RESUMO

After the termination of zero-COVID-19 policy, the populace in China has experienced both Omicron BA.5 and XBB waves. Considering the poor antibody responses and severe outcomes observed among the elderly following infection, we conducted a longitudinal investigation to examine the epidemiological characteristics and antibody kinetics among 107 boosted elderly participants following the Omicron BA.5 and XBB waves. We observed that 96 participants (89.7%) were infected with Omicron BA.5, while 59 (55.1%) participants were infected with Omicron XBB. Notably, 52 participants (48.6%) experienced dual infections of both Omicron BA.5 and XBB. The proportion of symptomatic cases appeared to decrease following the XBB wave (18.6%) compared to that after the BA.5 wave (59.3%). Omicron BA.5 breakthrough infection induced lower neutralizing antibody titers against XBB.1.5, BA.2.86, and JN.1, while reinfection with Omicron XBB broadened the antibody responses against all measured Omicron subvariants and may alleviate the wild type-vaccination induced immune imprinting. Boosted vaccination type and comorbidities were the significant factors associated with antibody responses. Updated vaccines based on emerging severe acute respiratory syndrome coronavirus 2 variants are needed to control the Coronavirus Disease 2019 pandemic in the elderly.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Humanos , Idoso , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Masculino , Feminino , Estudos Longitudinais , China/epidemiologia , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Anticorpos Neutralizantes , Cinética , Anticorpos Antivirais/sangue , Reinfecção/epidemiologia
16.
J Exp Bot ; 75(5): 1314-1330, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069660

RESUMO

Sphingolipids are membrane lipids and play critical roles in signal transduction. Ceramides are central components of sphingolipid metabolism that are involved in cell death. However, the mechanism of ceramides regulating cell death in plants remains unclear. Here, we found that ceramides accumulated in mitochondria of accelerated cell death 5 mutant (acd5), and expression of mitochondrion-localized ceramide kinase (ACD5) suppressed mitochondrial ceramide accumulation and the acd5 cell death phenotype. Using immuno-electron microscopy, we observed hyperaccumulation of ceramides in acer acd5 double mutants, which are characterized by mutations in both ACER (alkaline ceramidase) and ACD5 genes. The results confirmed that plants with specific ceramide accumulation exhibited localization of ceramides to mitochondria, resulting in an increase in mitochondrial reactive oxygen species production. Interestingly, when compared with the wild type, autophagy-deficient mutants showed stronger resistance to ceramide-induced cell death. Lipid profiling analysis demonstrated that plants with ceramide accumulation exhibited a significant increase in phosphatidylethanolamine levels. Furthermore, exogenous ceramide treatment or endogenous ceramide accumulation induces autophagy. When exposed to exogenous ceramides, an increase in the level of the autophagy-specific ubiquitin-like protein, ATG8e, associated with mitochondria, where it directly bound to ceramides. Taken together, we propose that the accumulation of ceramides in mitochondria can induce cell death by regulating autophagy.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ceramidas/metabolismo , Ceramidas/farmacologia , Arabidopsis/metabolismo , Mitocôndrias/metabolismo , Autofagia , Morte Celular , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
17.
BMC Cancer ; 24(1): 444, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600507

RESUMO

BACKGROUND: Transforming growth factor-ß (TGF-ß) is a cytokine with multiple functions, including cell growth regulation, extracellular matrix production, angiogenesis homeostasis adjustment and et al. TGF-ß pathway activation promotes tumor metastasis/progression and mediates epithelial-mesenchymal transmission suppressing immunosurveillance in advanced tumors. GFH018, a small molecule inhibitor blocking TGF-ß signal transduction, inhibits the progression and/or metastasis of advanced cancers. This first-in-human study evaluated the safety, tolerability, pharmacokinetics (PK), and efficacy of GFH018 monotherapy in patients with advanced solid tumors. METHODS: This phase I, open-label, multicenter study used a modified 3+3 dose escalation and expansion design. Adult patients with advanced solid tumors failing the standard of care were enrolled. Starting at 5 mg, eight dose levels up to 85 mg were evaluated. Patients received GFH018 BID (14d-on/14d-off) starting on the 4th day after a single dose on cycle 1, day 1. Subsequent cycles were defined as 28 days. The study also explored the safety of 85 mg BID 7d-on/7d-off. Adverse events were graded using NCI criteria for adverse events (NCI-CTCAE v5.0). PK was analyzed using a noncompartmental method. Efficacy was evaluated using RECIST 1.1. Blood samples were collected for biomarker analysis. RESULTS: Fifty patients were enrolled and received at least one dose of GFH018. No dose-limiting toxicity occurred, and the maximum tolerated dose was not reached. Forty-three patients (86.0%) had at least one treatment-related adverse event (TRAE), and three patients (6.0%) had ≥ G3 TRAEs. The most common TRAEs (any grade/grade ≥3) were AST increased (18%/0%), proteinuria (14%/2%), anemia (14%/2%), and ALT increased (12%/0%). No significant cardiotoxicity or bleeding was observed. GFH018 PK was linear and dose-independent, with a mean half-life of 2.25-8.60 h from 5 - 85 mg. Nine patients (18.0%) achieved stable disease, and one patient with thymic carcinoma achieved tumor shrinkage, with the maximum target lesion decreased by 18.4%. Serum TGF-ß1 levels were not associated with clinical responses. The comprehensive recommended dose for Phase II was defined as 85 mg BID 14d-on/14d-off. CONCLUSIONS: GFH018 monotherapy presented a favorable safety profile without cardiac toxicity or bleeding. Modest efficacy warrants further studies, including combination strategies. TRIAL REGISTRATION: ClinicalTrial. gov ( https://www. CLINICALTRIALS: gov/ ), NCT05051241. Registered on 2021-09-02.


Assuntos
Neoplasias , Receptores de Fatores de Crescimento Transformadores beta , Adulto , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Critérios de Avaliação de Resposta em Tumores Sólidos , Fator de Crescimento Transformador beta , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores
18.
Neurochem Res ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834846

RESUMO

Neuroinflammation and endothelial cell apoptosis are prominent features of blood-brain barrier (BBB) disruption, which have been described in Alzheimer's disease (AD) and can predict cognitive decline. Recent reports revealed vascular ß-amyloid (Aß) deposits, Muller cell degeneration and microglial dysfunction in the retina of AD patients. However, there has been no in-depth research on the roles of inflammation, retinal endothelial cell apoptosis, and blood-retinal barrier (BRB) damage in AD retinopathy. We found that Raddeanin A (RDA) could improve pathological and cognitive deficits in a mouse model of Alzheimer's disease by targeting ß-amyloidosis, However, the effects of RDA on AD retinal function require further study. To clarify whether RDA inhibits inflammation and apoptosis and thus improves BRB function in AD-related retinopathy. In vitro we used Aß-treated HRECs and MIO-M1 cells, and in vivo we used 3×Tg-AD mice to investigate the effect of RDA on BRB in AD-related retinopathy. We found that RDA could improve BRB function in AD-related retinopathy by inhibiting NLRP3-mediated inflammation and suppressing Wnt/ß-catenin pathway-mediated apoptosis, which is expected to improve the pathological changes in AD-related retinopathy and the quality of life of AD patients.

19.
J Neurooncol ; 166(1): 113-127, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38191954

RESUMO

PURPOSE: Endosome associated trafficking regulator 1 (ENTR1) is a novel endosomal protein, which can affect multiple cellular biological behavior by remodeling plasma membrane structures. However, little is known regarding its function and underlying mechanisms in glioblastoma multiforme. METHODS: Expression profile and clinical signature were obtained from The Public Database of human tumor. Immunohistochemical staining and western blotting assays were used to measure ENTR1 expression level. Human primary GBM tumor cells and human GBM cell lines A172, U87 and U251 were used to clarify the precise role of ENTR1. CCK-8 assays, wound healing and transwell invasion assays were designed to investigate cell viability, invasion and migration of GBM cells, respectively. Underlying molecular mechanisms of ENTR1 were determined via RNA-seq analysis. Tumor formation assay was used to validate the influence of ENTR1 in vivo. RESULTS: Compared with normal brain tissues, ENTR1 was highly expressed in gliomas and correlated with malignant grades of gliomas and poor overall survival time. The proliferation and invasion of GBM cells could be weaken and the sensitivity to temozolomide (TMZ) chemotherapy increased after knocking down ENTR1. Overexpression of ENTR1 could reverse this effect. RNA-seq analysis showed that tumor necrosis factor (TNF) signaling pathway might be a putative regulatory target of ENTR1. Tumor formation assay validated that ENTR1 was a significant factor in tumor growth. CONCLUSION: Our results indicated that ENTR1 played an important role in cell proliferation, invasion and chemotherapeutic sensitivity of GBM, suggesting that ENTR1 might be a novel prognostic marker and significant therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Endossomos/metabolismo , Endossomos/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Transdução de Sinais
20.
EMBO Rep ; 23(5): e53475, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35343645

RESUMO

Recent evidence has revealed that small polypeptides (containing fewer than 100 amino acids) can be translated from noncoding RNAs (ncRNAs), which are usually defined as RNA molecules that do not encode proteins. However, studies on functional products translated from primary transcripts of microRNA (pri-miRNA) are quite limited. Here, we describe a peptide termed miPEP31 that is encoded by pri-miRNA-31. miPEP31 is highly expressed in Foxp3+ regulatory T cells (Tregs ) and significantly promotes the differentiation of Tregs without affecting their inhibitory ability. Our results show that miPEP31 is a cell-penetrating peptide both in vitro and in vivo. miPEP31 downregulates miR-31 expression, enhances peripheral Treg induction, and dramatically suppresses experimental autoimmune encephalomyelitis. Mechanistically, we show that miPEP31 acts as a transcriptional repressor inhibiting the expression of miRNA-31, a negative regulator of Tregs . Our results reveal an indispensable role of miPEP31 in maintaining immune homeostasis by promoting Treg differentiation and also present a potential therapeutic peptide for modulating miRNA expression and treating autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental , MicroRNAs , Animais , Autoimunidade/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/farmacologia , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa