Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 2): 124944, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37210061

RESUMO

Hyaluronic Acid (HA)-based pre-drugs can enable targeted drug delivery to cancer cells with CD44-high expressing, thus, it is essential to design an efficient, target specific drug delivery system based on HA. Plasma, as a simple and clean tool, has been widely used in the modification and crosslinking of biological materials in recent years. In this paper, we used the Reactive Molecular Dynamic (RMD) to explore the reaction between reactive oxygen species (ROS) in plasma and HA with drugs (PTX, SN-38, and DOX), in order to examine possible drug-coupled systems. The simulation results indicated the acetylamino groups in HA could be oxidized to unsaturated acyl groups, which offers the possibility of crosslinking. Three drugs also exposed the unsaturated atoms under the impact of ROS, which can cross-link directly to HA through CO and CN bonds, forming a drug coupling system with better release. This study revealed the exposure of active sites on HA and drugs by ROS impact in plasma, allowing us to study the crosslinking mechanism between HA and drugs at molecular level deeply, and also provided a new light for establishment of HA-based targeted drug delivery system.


Assuntos
Ácido Hialurônico , Nanopartículas , Espécies Reativas de Oxigênio , Ácido Hialurônico/química , Doxorrubicina/química , Simulação de Dinâmica Molecular , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Receptores de Hialuronatos , Linhagem Celular Tumoral
2.
J Med Chem ; 66(19): 13746-13767, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37791640

RESUMO

Metallo-ß-lactamases (MBLs) are zinc-dependent enzymes capable of hydrolyzing all bicyclic ß-lactam antibiotics, posing a great threat to public health. However, there are currently no clinically approved MBL inhibitors. Despite variations in their active sites, MBLs share a common catalytic mechanism with carbapenems, forming similar reaction species and hydrolysates. We here report the development of 2-aminothiazole-4-carboxylic acids (AtCs) as broad-spectrum MBL inhibitors by mimicking the anchor pharmacophore features of carbapenem hydrolysate binding. Several AtCs manifested potent activity against B1, B2, and B3 MBLs. Crystallographic analyses revealed a common binding mode of AtCs with B1, B2, and B3 MBLs, resembling binding observed in the MBL-carbapenem product complexes. AtCs restored Meropenem activity against MBL-producing isolates. In the murine sepsis model, AtCs exhibited favorable synergistic efficacy with Meropenem, along with acceptable pharmacokinetics and safety profiles. This work offers promising lead compounds and a structural basis for the development of potential drug candidates to combat MBL-mediated antimicrobial resistance.


Assuntos
Carbapenêmicos , Inibidores de beta-Lactamases , Animais , Camundongos , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Carbapenêmicos/farmacologia , Meropeném/farmacologia , Ácidos Carboxílicos , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa