Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401134, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816761

RESUMO

Strain engineering has been widely used to optimize platinum-based oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs). PtM3 (M is base metals), a well-known high-compressive-strain intermetallic alloy, shows promise as a low platinum ORR catalyst due to high intrinsic activity. However, during the alloying of Pt with a threefold amount of M, a notable phase separation between Pt and M may occur, with M particles rapidly sintering while Pt particles grow slowly, posing a challenge in achieving a well-defined PtM3 intermetallic alloy. Here, an entropy-driven Ostwald ripening reversal phenomenon is discovered that enables the synthesis of small-sized Pt(FeCoNiCu)3 intermetallic ORR catalysts. High entropy promotes the thermodynamic driving force for the alloying Pt with M, which triggers the Ostwald ripening reversal of sintered FeCoNiCu particles and facilitates the formation of uniform Pt(FeCoNiCu)3 intermetallic catalysts. The prepared Pt(FeCoNiCu)3 catalysts exhibit a high specific activity of 3.82 mA cm-2, along with a power density of ≈1.3 W cm-2 at 0.67 V and 94 °C with a cathode Pt loading of 0.1 mg cm-2 in H2-air fuel cell.

2.
Nat Commun ; 15(1): 415, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195668

RESUMO

Carbon supported PtCo intermetallic alloys are known to be one of the most promising candidates as low-platinum oxygen reduction reaction electrocatalysts for proton-exchange-membrane fuel cells. Nevertheless, the intrinsic trade-off between particle size and ordering degree of PtCo makes it challenging to simultaneously achieve a high specific activity and a large active surface area. Here, by machine-learning-accelerated screenings from the immense configuration space, we are able to statistically quantify the impact of chemical ordering on thermodynamic stability. We find that introducing of Cu/Ni into PtCo can provide additional stabilization energy by inducing Co-Cu/Ni disorder, thus facilitating the ordering process and achieveing an improved tradeoff between specific activity and active surface area. Guided by the theoretical prediction, the small sized and highly ordered ternary Pt2CoCu and Pt2CoNi catalysts are experimentally prepared, showing a large electrochemically active surface area of ~90 m2 gPt‒1 and a high specific activity of ~3.5 mA cm‒2.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa