RESUMO
Developing 3D hosts is one of the most promising strategies for putting forward the practical application of lithium(Li)-based anodes. However, the concentration polarization and uniform electric field of the traditional 3D hosts result in undesirable "top growth" of Li, reduced space utilization, and obnoxious dendrites. Herein, a novel dual-gradient 3D host (GDPL-3DH) simultaneously possessing gradient-distributed pore structure and lithiophilic sites is constructed by an electrospinning route. Under the synergistic effect of the gradient-distributed pore and lithiophilic sites, the GDPL-3DH exhibits the gradient-increased electrical conductivity from top to bottom. Also, Li is preferentially and uniformly deposited at the bottom of the GDPL-3DH with a typical "bottom-top" mode confirmed by the optical and SEM images, without Li dendrites. Consequently, an ultra-long lifespan of 5250 h of a symmetrical cell at 2 mA cm-2 with a fixed capacity of 2 mAh cm-2 is achieved. Also, the full cells based on the LiFePO4, S/C, and LiNi0.8Co0.1Mn0.1O2 cathodes all exhibit excellent performances. Specifically, the LiFePO4-based cell maintains a high capacity of 136.8 mAh g-1 after 700 cycles at 1 C (1 C = 170 mA g-1) with 94.7% capacity retention. The novel dual-gradient strategy broadens the perspective of regulating the mechanism of lithium deposition.
RESUMO
The integration of magnetic resonance imaging (MRI), cGAS-STING, and anti-CTLA-4 (aCTLA-4) based immunotherapy offers new opportunities for tumor precision therapy. However, the precise delivery of aCTLA-4 and manganese (Mn), an activator of cGAS, to tumors remains a major challenge for enhanced MRI and active immunotherapy. Herein, a theragnostic nanosphere Mn-CREKA-aCTLA-4-SS (MCCS) is prepared by covalently assembling Mn2+, silk sericin (SS), pentapeptide CREKA, and aCTLA-4. MCCS are stable with an average size of 160 nm and is almost negatively charged or neutral at pH 5.5/7.4. T1-weighted images showed MCCS actively targeted tumors to improve the relaxation rate r1 and contrast time of MRI. This studies demonstrated MCCS raises reactive oxygen species levels, activates the cGAS-STING pathway, stimulates effectors CD8+ and CD80+ T cells, reduces regulatory T cell numbers, and increases IFN-γ and granzyme secretion, thereby inducing tumor cells autophagy and apoptosis in vitro and in vivo. Also, MCCS are biocompatible and biosafe. These studies show the great potential of Mn-/SS-based integrative material MCCS for precision and personalized tumor nanotheragnostics.
Assuntos
Neoplasias , Sericinas , Humanos , Manganês , Imunoterapia , Imageamento por Ressonância Magnética , Nucleotidiltransferases , Neoplasias/diagnóstico por imagem , Neoplasias/terapiaRESUMO
Efficient and robust oxygen reduction reaction (ORR) catalysts are essential for the development of high-performance anion-exchange membrane fuel cells (AEMFC). To enhance the electrochemical performance of metal-organic frameworks of cobalt-based zeolite imidazolium skeleton (ZIF-67), this study reported a novel ZIF-67-4@CNT byin situgrowing carbon nanotubes (CNTs) on the surface of ZIF-67 via a mild two-step pyrolysis/oxidation treatment. The electrochemical results showed that the as-prepared ZIF-67-4@CNT after CTAB modification exhibited excellent catalytic activity with good stability, with Eonset, E1/2, and Ilimit, respectively were 0.98 V (versus RHE), 0.87 V (versus RHE) and 6.04 mA cm-2@1600 rpm, and a current retention rate of about 94.21% after polarized at 0.80 V for 10 000 s, which were all superior to that of the commercial 20 wt% Pt/C. The excellent ORR catalytic performance was mainly attributed to the large amount of thein situgrowing CNTs on the surface, encapsulated with a wide range of valence states of metallic cobalt.
RESUMO
Fall armyworm, Spodoptera frugiperda (J. E. Smith), is a widely recognized global agricultural pest that has significantly reduced crop yields all over the world. S. frugiperda has developed resistance to various insecticides. Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides, leading to increased resistance in insect populations. However, the function of the specific P450 gene for lambda-cyhalothrin resistance in S. frugiperda was unclear. Herein, the expression patterns of 40 P450 genes in the susceptible and lambda-cyhalothrin-resistant populations were analyzed. Among them, CYP321A7 was found to be overexpressed in the resistant population, specifically LRS (resistance ratio = 25.38-fold) derived from a lambda-cyhalothrin-susceptible (SS) population and FLRS (a population caught from a field, resistance ratio = 63.80-fold). Elevated enzyme activity of cytochrome P450 monooxygenases (P450s) was observed for LRS (2.76-fold) and the FLRS (4.88-fold) as compared to SS, while no significant differences were observed in the activities of glutathione S-transferases and esterases. Furthermore, the knockdown of CYP321A7 gene by RNA interference significantly increased the susceptibility to lambda-cyhalothrin. Remarkably, the knockdown of CYP321A7 reduced the enzymatic activity of P450 by 43.7%, 31.9%, and 22.5% in SS, LRS, and FLRS populations, respectively. Interestingly, fourth-instar larvae treated with lambda-cyhalothrin at the LC30 dosage had a greater mortality rate due to RNA interference-induced suppression of CYP321A7 (with increases of 61.1%, 50.0%, and 45.6% for SS, LRS, and FLRS populations, respectively). These findings suggest a link between lambda-cyhalothrin resistance and continual overexpression of CYP321A7 in S. frugiperda larvae, emphasizing the possible importance of CYP321A7 in lambda-cyhalothrin detoxification in S. frugiperda.
Assuntos
Sistema Enzimático do Citocromo P-450 , Resistência a Inseticidas , Inseticidas , Nitrilas , Piretrinas , Spodoptera , Animais , Piretrinas/farmacologia , Piretrinas/toxicidade , Spodoptera/efeitos dos fármacos , Spodoptera/genética , Nitrilas/toxicidade , Nitrilas/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Inseticidas/farmacologia , Inseticidas/toxicidade , Resistência a Inseticidas/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Interferência de RNA , Inativação Metabólica , Larva/efeitos dos fármacos , Larva/genéticaRESUMO
The traditional Chinese medicine(TCM) single preparation refers to the innovative TCM made from the whole or the effective part(including the effective ingredient) extract of a TCM single herb by modern technology. They have a long history of applications, definite effects and few side effects. It is an indispensable part of the research of innovative TCM. In recent years, with the optimization of national policies, the development of TCM single preparation shows a positive trend. However, because of the imbalance in the composition ratio, the need for expansion of indications, the need for further basic research, and the low conversion rate of existing patent achievements in universities and institutes, the TCM single preparation still has significant development space. In this review, we analyze and study the current situation, characteristics and difficulties of TCM single preparation, as well as relevant clinical application, basic research, industrialization and patent application information through statistical analysis of TCM single preparations in the Chinese Pharmacopoeia, which helps to provide direction for the development and research of single preparation of TCM.
Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/química , HumanosRESUMO
Identification of body fluids is critical for crime scene reconstruction, and a source of investigation source of investigative leads. In recent years, microbial DNA analysis using sequencing and quantitative real-time polymerase chain reaction have been used to identify body fluids. However, these techniques are time-consuming, expensive, and require complex workflows. In this study, a new method for simultaneous detection of Streptococcus salivarius and Lactobacillus crispatus using polymerase chain reaction (PCR) in combination with a lateral flow dipstick (LFD) was developed to identify saliva and vaginal fluid in forensic samples. LFD results can be observed with the naked eye within 3 min with a sensitivity of 0.001 ng/µL DNA. The PCR-LFD assay was successfully used to detect S. salivarius and L. crispatus in saliva and vaginal fluid respectively, and showed negative results in blood, semen, nasal fluid, and skin. Moreover, saliva and vaginal fluid were detectable even at an extremely high mixing ratio of sample DNA (1:999). Saliva and vaginal fluid were identified in various mock forensic samples. These results indicate that saliva and vaginal fluid can be effectively detected by identifying S. salivarius and L. crispatus, respectively. Furthermore, we have shown that DNA samples used to identify saliva and vaginal fluid can also provide a complete short tandem repeat (STR) profile when used as source material for forensic STR profiling. In summary, our results suggest that PCR-LFD is a promising assay for rapid, simple, reliable, and efficient identification of body fluids.
Assuntos
Líquidos Corporais , Saliva , Feminino , Humanos , Saliva/microbiologia , Sêmen , DNA , Reação em Cadeia da Polimerase em Tempo Real , Bactérias , Genética ForenseRESUMO
Soil microbial biomass and composition are affected by resource supply and water availability. However, the response of soil microbial communities to nitrogen fertilization under different water availability conditions is unclear. Therefore, this study conducted a 6-year pot experiment comprising five watering regimes (40%, 50%, 60%, 80%, and 100% of field capacity (FC)) and three nitrogen fertilization levels (NH4NO3 solution; 0 [N0], 20 [N1], and 40 [N2] g N m-2 year-1) to investigate soil microbial biomass, composition, and properties. The results indicated that soil microbial biomass and composition were more strongly affected by nitrogen fertilization compared with water regime. Nitrogen fertilization increased soil microbial biomass and altered soil microbial community composition, especially under low soil water availability. Soil microbial biomass was positively linearly associated with soil water regimes under N0, whereas it responded polynomially to soil water regimes under N1 and N2. The maximal soil microbial biomass was observed at FC80 for N1 and FC60 for N2. Furthermore, the biomass of soil microbial groups with high nitrogen and carbon acquisition ability as well as the enzyme activities of carbon and nitrogen cycling (ß-1,4-glucosidase and ß-1,4-N-acetyl-glucosaminidase, respectively) were stimulated by nitrogen fertilization. Soil microbial biomass was affected directly by nitrogen fertilization and indirectly by nitrogen and water regimes, via altering soil pH, dissolved inorganic nitrogen (NH4+-N and NO3--N) concentration, and soil organic carbon concentration. This study provides new insights into the effect of interaction between soil nitrogen and water availabilities on soil microbial biomass, composition, and its underlying mechanism.
Assuntos
Carbono , Solo , Solo/química , Biomassa , Carbono/química , Nitrogênio/análise , Água , Microbiologia do Solo , FertilizaçãoRESUMO
We have identified that hydrogen sulfide (H2 S), a gaseous mediator, plays a crucial role in antioxidative, anti-inflammatory, and cytoprotective effects on uranium (U)-triggered rat nephrotoxicity. Pyroptosis is a special mode of inflammation and programmed cell death involved in the activation of inflammasome and Caspase-1 and the release of inflammatory cytokines. This study aims to confirm whether H2 S can alleviate U-induced rat NRK-52E cell pyroptosis and to investigate the H2 S underlying regulatory mechanism. Our results indicate that pretreatment with NaHS (an H2 S donor) significantly inhibited U-increased reactive oxygen species level, NLRP3, apoptosis-related speck-like protein consisting of a caspase recruitment domain (ASC), and cleaved Caspase-1 proteins expression, gasdermin D messenger RNA (GSDMD mRNA) expression, interleukin (IL)-1ß and IL-18 contents, lactate dehydrogenase leakage, and numbers of double-positive dying kidney cells. NaHS application evidently augmented phosphorylated PI3K, AKT, and mTOR expression as well as ratios of their respective phosphorylation to the corresponding total proteins which were downregulated by U treatment. But, LY294002 (a PI3K inhibitor) administration effectively abrogated the consequences of NaHS on the levels of p-PI3K, cleaved Caspase-1, ASC and NLRP3 proteins, GSDMD mRNA expression, and (IL)-1ß and IL-18 contents. Simultaneously, LY294002 significantly reversed the effects of NaHS on U-induced pyroptosis rate and cytotoxicity. Taken together, these results indicate that H2 S ameliorated U-triggered NRK-52E cells pyroptosis via upregulation of PI3K/AKT/mTOR pathway, suggesting a novel role for H2 S in the management of nephrotoxicity caused by U exposure.
Assuntos
Sulfeto de Hidrogênio , Nefropatias , Urânio , Ratos , Animais , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interleucina-18/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Cima , Inflamassomos/metabolismo , Rim/metabolismo , Caspase 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , RNA MensageiroRESUMO
Traditional Chinese medicine is the main source of natural products due to its remarkable clinical efficacy. Syringa oblata Lindl (S. oblata) was widely used because of its extensive biological activities. However, to explore the antioxidant components of S. oblata against tyrosinase, the experiments of antioxidation in vitro were employed. At the same time, the determination of TPC was also use to assess the antioxidant ability of CE, MC, EA and WA fractions and the liver protective activity of the EA fraction was evaluated by mice in vivo. Next, UF-LC-MS technology was performed to screen and identify the efficient tyrosinase inhibitors in S. oblata. The results showed that alashinol (G), dihydrocubebin, syripinin E and secoisolariciresinol were characterized as potential tyrosinase ligands and their RBA values were 2.35, 1.97, 1.91 and 1.61, respectively. Moreover, these four ligands can effectively dock with tyrosinase molecules, with binding energies (BEs) ranging from 0.74 to -0.73 kcal/mol. In addition, tyrosinase inhibition experiment was employed to evaluate the tyrosinase inhibition activities of four potential ligands, the result showed that compound 12 (alashinol G, IC50 = 0.91 ± 0.20 mM) showed the strongest activity to tyrosinase, followed by secoisolariciresinol (IC50 = 0.99 ± 0.07 mM), dihydrocubebin (IC50 = 1.04 ± 0.30 mM) and syripinin E (IC50 = 1.28 ± 0.23 mM), respectively. The results demonstrate that S. oblata might have excellent antioxidant activity, and UF-LC-MS technique is a effective means to filter out tyrosinase inhibitors from natural products.
Assuntos
Antioxidantes , Syringa , Animais , Camundongos , Antioxidantes/farmacologia , Monofenol Mono-Oxigenase , Ultrafiltração/métodos , Ligantes , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/químicaRESUMO
The mining and leakage of molybdenum (Mo) can cause environmental contamination which has not been realized until recently. Bacteria that can mitigate Mo-contamination was enriched and isolated. The low temperature and different pH conditions were considered to analysis its feasibility in Northern China which suffers from a long time of low temperatures every year. The result showed that the removal rate of MoO42- by Raoultella ornithinolytica A1 reached 30.46% at 25 °C and pH 7.0 in Luria-Bertani medium (LB). Meanwhile, A1 also showed some efficiency in the reduction of MoO42- in low phosphate molybdate medium (LPM), which reached optimum at the MoO42- concentration of 10 mM. The results of FTIR indicated that the cell wall performed an essential role in the MoO42- removal process, which was illustrated by the distribution of Mo in A1 (Mo bound to cell wall accounted for 92.29% of the total MoO42- removed). In addition, low temperature (10 °C) effect the removal rate of MoO42- by - 8.38 to 11.66%, indicating the potential for the in-situ microbial remediation of Mo-contaminated environments in low temperature areas.
Assuntos
Enterobacteriaceae , Molibdênio , Molibdênio/farmacologia , Molibdênio/metabolismo , Enterobacteriaceae/metabolismo , ChinaRESUMO
Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is one of the most destructive insect pests owned strong resistance to different insecticides. Indoxacarb as a novel oxadiazine insecticide becomes the main pesticide against S. litura. DIMBOA [2,4-dihydroxy-7-methoxy-2 H-1,4-benz-oxazin-3(4 H)-one] is involved in important chemical defense processes in corn plants. However, the insects' adaptation mechanism to insecticides when exposed to defensive allelochemicals in their host plants remains unclear. Here, we assessed multi-resistance, and resistance mechanisms based on S. litura life history traits. After 18 generations of selection, indoxacarb resistance was increased by 61.95-fold (Ind-Sel) and 86.06-fold (Dim-Sel) as compared to the Lab-Sus. Also, DIMBOA-pretreated larvae developed high resistance to beta-cypermethrin, chlorpyrifos, phoxim, chlorantraniliprole, and emamectin benzoate. Meanwhile, indoxacarb (LC50) was applied to detect its impact on thirty-eight detoxification-related genes expression. The transcripts of SlituCOE073, SlituCOE009, SlituCOE074, and SlituCOE111 as well as SlGSTs5, SlGSTu1, and SlGSTe13 were considerably raised in the Ind-Sel strain. Among the twenty-three P450s, CYP6AE68, CYP321B1, CYP6B50, CYP9A39, CYP4L10, and CYP4S9v1 transcripts denoted significantly higher levels in the Ind-Sel strain, suggesting that CarEs, GSTs and P450s genes may be engaged in indoxacarb resistance. These outcomes further highlighted the importance of detoxification enzymes for S. litura gene expression and their role in responses to insecticides and pest management approaches.
Assuntos
Inseticidas , Animais , Spodoptera/fisiologia , Inseticidas/farmacologia , Nicotiana/metabolismo , Benzoxazinas , Larva/metabolismo , Expressão Gênica , Resistência a Inseticidas/genéticaRESUMO
Circulating tumor cells (CTCs) are considered reliable cancer biomarkers for the liquid biopsy of many types of tumors. The direct detection of CTCs in human blood with normal biosensors, however, remains challenging because of severe biofouling in blood that contains various proteins and a large number of cells. Herein, we report the construction of an antifouling electrochemical biosensor capable of assaying CTCs directly in blood, based on a designed multifunctional peptide and the electrodeposited conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). The designed peptide possesses antifouling capability in complex biological media and specific recognition ability to capture breast cancer cells MCF-7. Meanwhile, electrodeposited PEDOT can promote electron transfer at the sensing interface, improve the signal-to-noise ratio for the detection, and thus enhance the sensitivity of the biosensor. The integration of the multifunctional peptide and conducting polymer PEDOT ensures that the developed biosensor is able to perform directly in blood samples without purification or separation. The antifouling electrochemical biosensor for the detection of MCF-7 cells exhibits a wide linear range over 4 orders, with a limit of detection (LOD) of 17 cells mL-1. More interestingly, even when performing in 25% human blood, the biosensor still retains a linear response with an LOD of 22 cells mL-1, without suffering significantly from biofouling in real blood. This work provides a promising strategy for the direct analysis of CTCs in human blood without a complicated pretreatment, and it may find practical application in the liquid biopsy of cancers.
Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Incrustação Biológica/prevenção & controle , Técnicas Eletroquímicas , Humanos , Peptídeos/análise , PolímerosRESUMO
The further commercialization of renewable energy conversion and storage technologies requires heterogeneous electrocatalysts that meet the exacting durability target. Studies of the stability and degradation mechanisms of electrocatalysts are expected to provide important breakthroughs in stability issues. Accessible in situ/operando techniques performed under realistic reaction conditions are therefore urgently needed to reveal the nature of active center structures and establish links between the structural motifs in a catalyst and its stability properties. This review highlights recent research advances regarding in situ/operando techniques and improves the understanding of the stabilities of advanced heterogeneous electrocatalysts used in a diverse range of electrochemical reactions; it also proposes some degradation mechanisms. The review concludes by offering suggestions for future research.
Assuntos
Técnicas Eletroquímicas , Catálise , Técnicas Eletroquímicas/métodosRESUMO
In recent years, more attention has been given to novel patterns of cell death observed during ischemia/reperfusion (I/R). Necroptosis is a regulable secondary cell death pathway; necroptosis is different from traditional forms of cell death, and it is regulated by the RIPK1-RIPK3-MLKL signaling pathway. JLX001 is the double hydrochloride of the natural compound cyclovirobuxine D (CVB-D). Previous studies have confirmed that CVB-D exerts a significant effect on cardiovascular and cerebrovascular diseases and that JLX001 can reduce ischemic brain injury by inhibiting cell apoptosis. For the first time, this project explored the in vivo and in vitro inhibitory effects of the therapeutic administration of JLX001 on the neuronal necroptosis caused by cerebral ischemia-reperfusion injury (CIRI). The middle cerebral artery occlusion reperfusion (MCAO/R) model was used to simulate I/R injury in rats in vivo, and oxygen-glucose deprivation and reperfusion (OGD/R) was used to simulate I/R injury in vitro. After the administration of JLX001, the relative expression of necroptosis-related molecules was measured by ELISA, RT-PCR, HE staining, immunofluorescence and Western blotting. The results showed that JLX001 significantly reduced pathological damage and the cerebral infarction rate in rat brain tissues, and the expression of neuronal necroptosis-related molecules was reduced, suggesting that JLX001 may regulate CIRI through the classic RIPK1-RIPK3-MLKL necroptosis pathway.
Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Ratos , Necroptose , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológicoRESUMO
Uranium (U) induces generation of excessive intracellular reactive oxygen species (ROS), which is generally considered as a possible mediator of U-triggered kidney tubular cells injury and nephrotoxicity. Our goal is designed to elucidate that the precise molecular mechanism in ROS downstream is association with U-induced NRK-52E cells apoptosis. The results show that U intoxication in NRK-52E cells reduced cell activity and triggered apoptosis, as demonstrated by flow cytometry and apoptotic marker cleaved Caspase-3 expression. U exposure triggered endoplasmic reticulum (ER) stress, which is involvement of apoptosis determined by marker molecules including GRP78, PERK, IRE1, ATF6, CHOP, cleaved Caspase-12, and Caspase-3. Administration of antioxidant N-acetylcysteine (NAC) effectively blocked U-triggered ROS generation, ER stress, and apoptosis. U contamination evidently decreased the expression of phosphorylation PI3K, AKT, and mTOR and ratios of their respective phosphorylation to the corresponding total proteins. Application of a PI3K activator IGF-1 significantly abolished these adverse effects of U intoxication on PI3K/AKT/mTOR signaling and subsequently abrogated U-triggered apoptosis. NAC also effectively reversed down-regulation of phosphorylated PI3K induced by U exposure. Taken together, these data strongly suggest that U treatment induces NRK-52E cells apoptosis through ROS production, ER stress, and down-regulation of PI3K/AKT/mTOR signaling. Targeting ROS formation-, ER stress-, and PI3K/AKT/mTOR pathway-mediated apoptosis could be a novel approach for attenuating U-triggered nephrotoxicity.
Assuntos
Estresse do Retículo Endoplasmático , Urânio , Apoptose , Rim/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Urânio/farmacologiaRESUMO
A facile and versatile method for generating radicals from Csp3-H bonds under metal-free and organic-peroxide-free conditions was developed. By combining safe persulfate and low-toxic quaternary ammonium salt, a wide variety of Csp3-H compounds including ethers, (hetero)aromatic/aliphatic ketones, alkylbenzenes, alkylheterocycles, cycloalkanes, and haloalkanes were selectively activated to generate the corresponding C-centered radicals, which could be further captured by N-arylacrylamides to deliver the valuable functionalized oxindoles. Good functional group tolerance was demonstrated. The useful polycarbonyl compound and esters were also modified with the strategy. Moreover, the combination can also be applied to the practical coupling between simple haloalkanes and N-hydroxyphthalimide (NHPI).
RESUMO
Short tandem repeat (STR) markers have been widely used in forensic paternity testing and individual identification, but the STR mutation might impact on the forensic result interpretation. Importantly, the STR mutation rate was underestimated due to ignoring the "hidden" mutation phenomenon in most similar studies. Considering this, we use Slooten and Ricciardi's restricted mutation model based on big data to obtain more accurate mutation rates for each marker. In this paper, the mutations of 20 autosomal STRs loci (D3S1358, D1S1656, D13S317, Penta E, D16S539, D18S51, D2S1338, CSF1PO, Penta D, TH01, vWA, D21S11, D6S1043, D7S820, D5S818, TPOX, D8S1179, D12S391, D19S433, and FGA; The restricted model does not include the correction factor of D6S1043, this paper calculates remaining 19 STR loci mutation rates) were investigated in 28,313 (Total: 78,739 individuals) confirmed parentage-testing cases in Chinese Han population. As a result, total 1665 mutations were found in all loci, including 1614 one-steps, 34 two-steps, 8 three-steps, and 9 nonintegral mutations. The loci-specific average mutation rates ranged from 0.00007700 (TPOX) to 0.00459050 (FGA) in trio's and 0.00000000 (TPOX) to 0.00344850 (FGA) in duo's. We analyzed the relationship between mutation rates of the apparent and actual, the trio's and duo's, the paternal and maternal, respectively. The results demonstrated that the actual mutation rates are more than the apparent mostly, and the values of µ1"/µ2"(apparent) are also greater than µ1/µ2 (actual) commonly (µ1", µ1; µ2", µ2 are the mutation rates of one-step and two-step). Therefore, the "hidden" mutations are identified. In addition, the mutations rates of trio's and duo's, the paternal and maternal, exhibit significant difference. Next, those mutation data are used to do a comparison with the studies of other Han populations in China, which present the temporal and regional disparities. Due to the large sample size, some rare mutation events, such as monozygotic (MZ) mutation and "fake four-step mutation", are also reported in this study. In conclusion, the estimation values of actual mutations are obtained based on big data, they can not only provide basic data for the Chinese forensic DNA and population genetics databases, but also have important significance for the development of forensic individual identification, paternity testing and genetics research.
Assuntos
Big Data , Repetições de Microssatélites , Frequência do Gene , Genética Populacional , Humanos , Repetições de Microssatélites/genética , Mutação , Taxa de MutaçãoRESUMO
The high shear wet granulation(HSWG) process of Chinese medicine has a complicated mechanism. There are many influencing factors that contribute to this process. In order to summarize the manufacturability of different kinds of materials in HSWG, this paper constructed a material library composed of 11 materials, including 4 Chinese medicine extracts and 7 pharmaceutical excipients. Each material was described by 22 physical parameters. Several binders were employed, and their density, viscosity and surface tension were characterized. Combining empirical constraints and the principle of randomization, 21 designed experiments and 8 verification experiments were arranged. The partial least squares(PLS) algorithm was used to establish a process model in prediction of the median granule size based on properties of raw materials and binders, and process parameters. The surface tension and density of binders, as well as the maximum pore saturation were identified as key variables. In the latent variable space of the HSWG process model, all materials could be divided into three categories, namely the Chinese medicine extracts, the diluents and the disintegrants. The granulation of Chinese medicine extracts required low viscosity and low amount of binder, and the resulted granule sizes were small. The diluent powders occupied a large physical space, and could be made into granules with different granule sizes by adjusting the properties of binders. The disintegrants tended to be made into large granules under the condition of aqueous binder. The combination use of material database and multivariate modeling method is conducive to innovate the knowledge discovery of the wet granulation process of Chinese medicine, and provides a basis for the formulation and process design based on material attributes.
Assuntos
Excipientes , Medicina Tradicional Chinesa , Composição de Medicamentos , Tamanho da Partícula , Pós , Comprimidos , Tecnologia FarmacêuticaRESUMO
Stroke is the fifth leading cause of death worldwide and is a main cause of disability in adults. Neither currently marketed drugs nor commonly used treatments can promote nerve repair and neurogenesis after stroke, and the repair of neurons damaged by ischemia has become a research focus. This article reviews several possible mechanisms of stroke and neurogenesis and introduces novel neurogenic agents (fibroblast growth factors, brain-derived neurotrophic factor, purine nucleosides, resveratrol, S-nitrosoglutathione, osteopontin, etc.) as well as other treatments that have shown neuroprotective or neurogenesis-promoting effects.
Assuntos
Isquemia Encefálica/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Isquemia Encefálica/etiologia , Humanos , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/etiologiaRESUMO
Skeletal remains encountered frequently in forensic applications are a challenging specimen, since their DNA is usually degraded due to harsh conditions, limiting the utilization of skeletal DNA. Forensic scientists have tried various methods to extract DNA from skeletal remains of low quantity and poor quality or improve detecting technology for more information from compromised DNA. Compared with traditional capillary electrophoresis (CE), massively parallel sequencing (MPS) is more sensitive to shorter fragments, able to detect allele sequences for variations from core motif or flanking regions, and able to detect more markers with a higher discrimination power. In this study, short tandem repeats (STR) and single nucleotide polymorphisms (SNP) from 35 human skeletons were genotyped by MPS platform, and CE method was also used to perform STR genotyping. The results indicated that the detection rates reached 100.00% in 16 of 35 samples with MPS method, while the same 100.00% was reached in only 9 samples with CE. The success rates of MPS were also higher than that of CE method in shared 21 loci (excluding Y-indel, DYS391, and SE33), especially in loci detected by MPS method only. Besides, all SNPs (124 and 90 SNPs in males and females) were detected in 18 samples of 35 samples by MPS method. Some intra-allelic sequence variants were observed in eight loci (D21S11, D8S1179, D5S2800, D3S1358, vWA, D2S1338, D1S1656, D12S391) using MPS technology. Interestingly, there is a sample showing genotyping disagreement in FGA locus. The clone sequencing verified that a "T" deletion discovered in flanking sequence of FGA led to wrong genotyping on Ampliseq Converge. Our results indicated that MPS could be adopted in qualified labs as a supplementary when the DNA of skeletal remains are hard to identify.